Confiabilidade Autovalidável para Sistemas com Processo de Falhas Exponencial

Autores

  • André Feitoza Mendonça Centro de Informática - Universidade Federal de Pernambuco
  • Marcilia Andrade Campos

DOI:

https://doi.org/10.5540/tema.2013.014.03.0383

Resumo

A computação da confiabilidade envolve números reais, o que gera problemas numéricos decorrentes das limitações encontradas na manipulação de reais em máquinas digitais. Este trabalho propõe um método, implementado no Matlab utilizando a biblioteca Intlab, para a obtenção de intervalos que encapsulam valores de confiabilidade real de sistemas com processo de falhas exponencial, controlando erros numéricos. O software SHARPE foi empregado para validar o método implementado.

Biografia do Autor

André Feitoza Mendonça, Centro de Informática - Universidade Federal de Pernambuco

Mestre em Ciência da Computação pela Universidade Federal de Pernambuco (2012/UFPE) e Laureado em Engenharia da Computação pela mesma instituição (2010/UFPE). Atuo nas áreas de Computação Científica, Análise de Desempenho e Matemática Intervalar.

Marcilia Andrade Campos

Possui graduações em Matemática (1969/UFPE), Estatistica (1971/UFPE), Especialização em Estatística (1975/UFPE), Mestrado em Estatística (1978/UFPE) e Doutorado em Ciência da Computação (1997/UFPE). Atualmente é professora Associado 2 da Universidade Federal de Pernambuco. Atua principalmente em: Matemática da Computação, Probabilidade, Matemática Intervalar, Aritmética de Exatidão Máxima e Avaliação de Desempenho

Referências

M. A. Campos, Interval probability: applications to discrete random variables, em TEMA - Tendências em Matemática Aplicada e Computacional, 1, No. 2 (2000), 333-343.

O. Caprani, K. Madsen, H. B. Nielsen, "Introduction to Interval Analysis", Technical University of Denmark, Copenhagen, 2002.

F. P. A. Coolen, M. J. Newby, "Bayesian Reliability Analysis with Imprecise Prior Probabilities", Eindhoven University of Technology, Eindhoven, 1992.

C. E. Ebeling, "An Introduction to Reliability and Maintainability Engineering", Waveland Press, Illinois, 1997.

B. V. Goldberg, What every computer scientist should know about floating-point arithmetic, em ACM Computing Surveys, 23, No. 1 (1991), 153-230.

P. S. Grigoletti, G. P. Dimuro, L. V. Barboza, Módulo python para matemática intervalar, em TEMA - Tendências em Matemática Aplicada e Computacional, 8, No. 1 (2007), 73-82.

C. Hirel, X. Sahner, X. Zang, K. Trivedi, "Reliability and Performability Modeling using SHARPE 2000", 2011. (disponível em: <http://people.ee.duke.edu/~kst/>.)

Institute of Electrical and Electronic Engineers, IEEE standard for binary floating - Point Arithmetic, em ACM GIGPLAN Notices, 22, (1987), 5-48.

R. Klatte, U. Kulisch, C. Lawo, M. Rauch, A. Wietho, "C-XSC - A C++ class library for extended scientific computing", Springer, Heidelberg, 1993.

U. W. Kulisch, W. L. Miranker, "Computer Arithmetic in Theory and Practice", Academic Press, New York, 1981.

W. Kuo, M. J. Zuo, "Optimal Reliability Modeling: Principles and Applications", John Wiley & Sons Inc, New Jersey, 2003.

The MathWorks Inc, "MATLAB 7.5", 2007. (disponível em: <http://www.mathworks.com/products/matlab/>.)

R. E. Moore, "Methods and Applications of Interval Analysis", Society for Industrial and Applied Mathematics Philadelphia, Philadelphia, 1979.

R. E. Moore, R. B. Kearfott, M. J. Cloud, "Introduction to Interval Analysis", Society for Industrial and Applied Mathematics Philadelphia, Philadelphia, 2009.

R. Sahner, K. S. Trivedi, A. Puliafito, "Performance and Reliability of Computer Systems: An Example-Based Approach Using the SHARPE Software Package", Kluwer Academic Publishers, Boston, 1996.

M. G. Santos, "Probabilidades Autovalidáveis para as Variáveis Aleatórias Exponencial, Normal e Uniforme", Tese de Doutorado, Centro de Informática, Universidade Federal de Pernambuco, Recife, PE, 2010.

S. M. Rump, "INTLAB 5.5 - INTerval LABoratory", 2010. (disponível em: )

L. V. Utkin, Imprecise reliability of cold standby systems, em International Journal of Quality & Reliability Management, 20, (2003), 722-739.

L. V. Utkin, Interval reliability of typical systems with partially known probabilities, em European Journal of Operational Research, 153, No. 3 (2004), 790-802.

L. V. Utkin, S. V. Gurov, Imprecise reliability of general structures, em Knowledge and Information Systems, 1, No. 4 (1999), 459-480.

Y. Wang, Imprecise probabilities based on generalized Intervals for system reliability assessment, em International Journal of Reliability & Safety, 1, (2009), 1-23.

Downloads

Publicado

2013-01-03

Como Citar

Mendonça, A. F., & Campos, M. A. (2013). Confiabilidade Autovalidável para Sistemas com Processo de Falhas Exponencial. Trends in Computational and Applied Mathematics, 14(3), 383–398. https://doi.org/10.5540/tema.2013.014.03.0383

Edição

Seção

Artigo Original