Anomalous Diffusion with Caputo-Fabrizio Time Derivative: an Inverse Problem.
DOI:
https://doi.org/10.5540/tcam.2022.023.03.00515Palavras-chave:
Inverse problems, fractional calculus, anomalous diffusionResumo
In this work we approximate the source for a non homogeneous fractional
diffusion equation in 1D, from measurements of the concentration at a finite number of
points. We use Caputo-Fabrizio time fractional derivative to model anomalous diffusion.
Separating variables, we arrive to a linear system which provides approximate values for
the Fourier coefficients of the unknown source. Numerical examples show the efficiency of
the method, as well as some of its practical limitations.
Referências
G. S. Teodoro, J. T. Machado, and E. C. de Oliveira, “A review of definitions of fractional derivatives and other operators,” Journal of Computational Physics, vol. 388, pp. 195–208, 2019.
B. Jin and W. Rundell, “A tutorial on inverse problems for anomalous diffusion processes,” Inverse Problems, vol. 31, pp. 1–40, 2015.
F. Mainardi and P. Paradisi, “Fractional diffusive waves,” Journal of Computational Acoustics, vol. 9(4), p. 1417–1436, 2001.
R. Agarwal, S. Jain, and R. P. Agarwal, “Mathematical modeling and analysis of dynamics of cytosolic calcium ion in astrocytes using fractional calculus,”Journal of Fractional Calculus and Applications, vol. 9(2), pp. 1–12, 2018.
Y. Yu, P. Perdikaris, and G. Karniadakis, “Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms,” Journal of Computational Physics, vol. 323, pp. 219–242, 2016.
J. Gomez-Aguilar, M. Lopez-Lopez, V. A. Martinez, D. Baleanu, and H. Khan, “Chaos in a cancer model via fractional derivatives with exponential decay and Mittag Leffler law,” Entropy, vol. 19(12), pp. 1–19, 2017.
D. Baleanu, G. Wu, and S. Zeng, “Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations,” Chaos Solitons & Fractals, vol. 102, p. 99–105, 2017.
E. Ahmed, A. El-Sayed, and H. El-Saka, “Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models,” J. Math. Anal. Appl., vol. 325, pp. 542–553, 2007.
A. Boukhouima, K. Hattaf, and N.Yousfi, “Dynamics of a fractional order HIV infection model with specific functional response and cure rate,” International Journal of Differential Equations, vol. 2017, pp. 1–8, 2017.
O. J. Peter, A. S. Shaikh, M. O. Ibrahim, K. S. Nisar, D. Baleanu, I. Khan, and A. I. Abioye, “Analysis and dynamics of fractional order mathematical model of Covid-19 in Nigeria using Atangana-Baleanu operator,” Computers, Materials and Continua, DOI:10.32604/cmc.2020.012314.
D. Baleanu, Z. Guvenc, and J. T. Machado, New Trends in Nanotechnology and Fractional Calculus Applications. Springer, 2010.
D. Baleanu, A. Golmankhaneh, A. Golmankhaneh, and M. Baleanu, “Fractional electromagnetic equations using fractional forms,” International Journal of Theoretical Physics, vol. 48, p. 3114–3123, 2009.
D. Baleanu, J. T. Machado, and A. Luo, Fractional Dynamics and Control. Springer, 2012.
P. Zhuang, F. Liu, V. Anh, and I. Turner, “Numerical methods for the variable order fractional advection diffusion equation with a nonlinear source term,”SIAM J. Numer. Anal., vol. 47(3), p. 1760–1781, 2009.
D. Baleanu, K. Diethelm, E. Scalas, and J. Trujillo, Fractional Calculus: Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos, World Scientific, 2012.
A. R. Kanth and N. Garg, “Computational simulations for solving a class of fractional models via Caputo-Fabrizio fractional derivative,” Procedia Computer Science, vol. 125, p. 476–482, 2018.
M. I. Troparevsky, S. Seminara, and M. Fabio, Chapter 1: A Review on Fractional Differential Equations and a Numerical Method to Solve Linear Boundary Value Problems. In: W. Legnani and T. Moschandreou Eds., Nonlinear Systems Volume 2, IntechOpen Book Series, IntechOpen, 2019.
L. Zada, R. Nawaz, S. Ahsan, K. S. Nisar, and D. Baleanu, “New iterative approach for the solutions of fractional order inhomogeneous partial differential equations,” AIMS Mathematics, vol. 6(2), p. 1348–1365, DOI: 10.3934/math.2021084.
M. Caputo and M. Fabrizio, “A new definition of fractional derivative without singular kernel,” Progr. Fract. Differ. Appl, vol. 1, pp. 73–85, 2015.
M. Caputo and M. Fabrizio, “Applications of new time and spatial fractional derivatives with exponential kernels,” Progr. Fract. Differ. Appl, vol. 2, pp. 1–11, 2016.
M. Caputo and M. Fabrizio, “On the notion of fractional derivative and applications to the hysteresis phenomena,” Meccanica, vol. 52, p. 3043–3052, 2017.
E. D. Goufo, “Application of the Caputo-Fabrizio fractional derivative without singular kernel to Korteweg-de Vries-Burgers equation,” Mathematical Modelling and Analysis, vol. 21(2), pp. 188–198, 2016.
A. Shaikh, A. Tassaddiq, K. S. Nisar, and D. Baleanu, “Analysis of differential equations involving Caputo–Fabrizio fractional operator and its applications to reaction–diffusion equations,” Advances in Difference Equations, vol. 178, pp. 188–198, 2019.
N. A. Salti, E. Karimov, and S. Kerbal, “Boundary-value problems for fractional heat equation involving Caputo-Fabrizio derivative,” NTMSCI 4, vol. 4, pp. 79–89, 2016.
A. E. Badia, T. Ha-Duong, and A. Hamdi, “Identification of a point source in a linear advection-dispersion-reaction equation: Application to a pollution source,” Inverse Problems, vol. 21, pp. 1–17, 2005.
A. Hasanov, M. Otelbaev, and B. Akpayev, “Inverse heat conduction problems with boundary and final time measured output data,” Inverse Prob. Sci. Eng., vol. 19(7), p. 985–1006, 2011.
A. Hasanov, “Simultaneous determination of source terms in a linear parabolic problem from the final overdetermination: weak solution approach,” J. Math. Anal. App., vol. 330, p. 766–779, 2007.
M. Yamamoto, “Conditional stability in determination of force terms of heat equations in a rectangle,” Math. Comput. Model, vol. 18, pp. 79–88, 1993.
A. Prilevko and D. Tkachenko, “Well-posedness of the inverse source problem for parabolic systems,” Differ. Equ., vol. 40, p. 1619–1626, 2004.
J. Cannon and P. D. Chateau, “Structural identification of an unknown source term in a heat equation,” Inverse Prob., vol. 14, pp. 535–551, 1998.
M. Kulbay, B. Mukanova, and C. Sebu, “Identification of separable sources for advection-diffusion equations with variable diffusion coefficient from boundary measured data,” Inverse Prob. Sci. Eng., 30 p., 2006, DOI:
1080/17415977.2016.1160396.
M. Kirane, S. Malik, and M. Al-Gwaizb, “An inverse source problem for a two dimensional time fractional difusión equation with nonlocal boundary conditions,”Math. Meth. Appl. Sci., vol. 36(9), pp. 1056–1069, 2012.
M.Kirane, M. Sadybekov, and A. Sarsenbi, “On an inverse problem of reconstructing a subdiffusion process from nonlocal data,” Math. Meth. Appl. Sci., vol. 42(6), pp. 2043–2052, 2019.
X. Xiong, Q. Zhou, and Y. Honb, “On an inverse problem of reconstructing a subdiffusion process from nonlocal data,” J. Math. Anal. Appl., vol. 393, p. 185–199, 2012.
M. Ali, S. Aziz, and S. Malik, “Inverse source problems for a space–time fractional differential equation,” Inverse Prob. Sci. Eng., vol. 28(1), pp. 47–68, 2020.
F. Dib and M. Kirane, “An inverse source problem for a two terms
time-fractional diffusion equation,” Bol. Soc. Paran. Mat., 15 p., DOI:
5269/bspm.45265.
M. Kirane and S. Malik, “Determination of an unknown source term and the temperature distribution for the linear heat equation involving fractional derivative in time,” Applied Mathematics and Computation, vol. 218(1), pp. 163–170, 2011.
A. Hasanov, “An inverse source problem with single Dirichlet type measured output data for a linear parabolic equation,” Appl. Math. Lett., vol. 24, p. 1269–1273, 2011.
T. Johansson and D. Lesnic, “Determination of a spacewise dependent heat source,” J. Comput. Appl. Math., vol. 209, p. 66–80, 2007.
A. Hasanov and B. Pektas, “Identification of an unknown time-dependent heat source term from overspecified Dirichlet boundary data by conjugate gradient method,” Comput. Math. Appl., vol. 65, pp. 42–570, 2013.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Direitos Autorais
Autores de artigos publicados no periódico Trends in Computational and Applied Mathematics mantêm os direitos autorais de seus trabalhos. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Os autores concedem ao periódico o direito de primeira publicação.
Propriedade Intelectual e Termos de uso
O conteúdo dos artigos é de responsabilidade exclusiva dos autores. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Esta licença permite que os artigos publicados sejam reutilizados sem permissão para qualquer finalidade, desde que o trabalho original seja corretamente citado.
O periódico encoraja os Autores a autoarquivar seus manuscritos aceitos, publicando-os em blogs pessoais, repositórios institucionais e mídias sociais acadêmicas, bem como postando-os em suas mídias sociais pessoais, desde que seja incluída a citação completa à versão do website da revista.