Rotational Steady Waves in a Low-pressure Region

Autores

DOI:

https://doi.org/10.5540/tcam.2022.023.02.00273

Palavras-chave:

Steady waves, rotational waves, shear flow, Euler equations.

Resumo

Nonlinear steady rotational waves in a low-pressure region are investigated. The problem is formulated in a simplified canonical domain through the use of a conformal mapping, which flattens the free surface. Steady waves are computed numerically using a Newton’s method and classified into three types. Besides, our results indicate that there is a region in which steady waves do not exist. The thickness of this region is compared with the one predicted by the weakly nonlinear, weakly dispersive regime.

Biografia do Autor

M. V. Flamarion, Universidade Federal Rural de Pernambuco

Mathematical Departament

Referências

Akylas, TR. 1984 On the excitation of long nonlinear water waves by a moving pressure distributions. J Fluid Mech. 141, 455-466

Baines, P. 1995 Topographic effects in stratified flows. Cambridge University

Press.

Binder, BJ., Blyth. M., Balasuriya, S. 2014 Non-uniqueness of steady

free-surface flow at critical Froude number, EPL. 105 44003-1-44003-6

Boyd, J. 1991 Weakly non-local solitons for capillary-gravity waves: Fifth- degree Korteweg-de Vries equation. Physica D: Nonlinear Phenomena 48 (1), 12–146

Choi, W. 2009 Nonlinear surface waves interacting with a linear shear current. Math Comput Simul., 80, 29-36.

Dyachenko. AL., Zakharov. VE., Kuznetsov. EA. 1996 Nonlinear dy- namics of the free surface of an ideal fluid, Plasma Phys. 22, 916-928.

Flamarion, M. V. & Milewski, P. A. & Nachbin A. 2019 Rotational waves generated by current-topography interaction. Stud Appl Math, 142, 433- 464.

Fracius, M., Hsu, H-C., Kharif, C. & Montalvo, P. 2016 Gravity- capillary waves in finite depth on flows of constant vorticity. Proc. R. Soc. Lond. A, 472, 20160363.

Grimshaw, R. & Smyth, N. 1986 Resonant flow of a stratified fluid over topography in water of finite depth. J. Fluid Mech., 169, 429-464.

Grimshaw, R. & Maleewong, M. 2013 Stability of steady gravity waves generated by a moving localized pressure disturbance in water of finite depth. Phys Fluids, 25.

Grimshaw, R. & Malewoong, M. 2016 Transcritical flow over two obstacles: forced Korteweg-de Vries framework J. Fluid Mech., 809, 918-940.

Grimshaw, R. & Malewoong, M. 2019 Transcritical flow over obstacles and holes: forced Korteweg-de Vries framework J. Fluid Mech., 881, 660-678.

Johnson, R. S. 2012 Models for the formation of a critical layer in water wave propagation. Phil. Trans. R. Soc. A 370, 1638-1660.

Joseph. A. 2016 Investigating Seaflaws in the Oceans New York: Elsevier.

Milewski, P. A. 2004 The Forced Korteweg-de Vries Equation as a Model for Waves Generated by Topography. CUBO A mathematical Journal 6 (4), 33-51.

Gao, T., Wang, Z. & Milewski, P. A. 2019 Nonlinear hydroelastic waves on a linear shear current at finite depth. J. Fluid Mech., 876, 55-86.

Pratt, LJ. 1984 On nonlinear flow with multiple obstructions. J. Atmos. Sci. 41 , 1214-1225.

Peyrard, M. 1994 Nonlinear excitations in biomolecules Berlim: Springer.

Trefethen, L. N. 2001 Spectral Methods in MATLAB. Philadelphia: SIAM..

Wu, T. Y. 1987 Generation of upstream advancing solitons by moving distur- banks J Fluid Mech 184 , 75-99.

Wu. DM & Wu. T. Y. 1982 Three-dimensional nonlinear long waves due to moving surface pressure. In: Proc. 14th. Symp. on Naval Hydrodynamics Nat. Acad. Sci., Washington, DC, 103-25.

Downloads

Publicado

2022-06-27

Como Citar

Flamarion, M. V. (2022). Rotational Steady Waves in a Low-pressure Region. Trends in Computational and Applied Mathematics, 23(2), 273–282. https://doi.org/10.5540/tcam.2022.023.02.00273

Edição

Seção

Artigo Original