Predição Multiescala de Tráfego de Redes Utilizando Redes Neurais RBF Treinadas com Algoritmo de Mínimos Quadrados Ortogonais
DOI:
https://doi.org/10.5540/tema.2008.09.03.0503Resumo
Neste artigo, apresentamos um novo algoritmo de treinamento para redes neurais RBF (Função de Base Radial) baseado em mínimos quadrados ortogonais e em decomposição multiescala de sinais. Propomos um algoritmo de predição de séries temporais que combina as predições de aproximações para estas mesmas séries e de seus detalhes em diferentes escalas através da Transformada Wavelet. Aplicamos as redes neurais RBF treinadas com o algoritmo proposto na prediçãode tráfego de redes de computadores. O treinamento das redes neurais RBF com algoritmo de mínimos quadrados ortogonais aliada à decomposição wavelet contribui para evitar problemas de mal condicionamento da matriz de interpolação, como também para melhorar a capacidade de extrapolação da rede neural RBF. Esta última característica é verificada pela redução do erro quadrático médio de predição. As simulações realizadas confirmam que predições mais precisas são obtidas para as séries temporais de tráfego de redes em relação a outras redes neurais existentes.Referências
S. Chen, S.A. Billings, Neural networks for nonlinear dynamic system modeling and identification, International Journal of Control 56, No. 2 (1992), 319-346.
G. Cybenco, Approximations by superposition of a sigmoidal function, Math. Control Signal Systems 2, No. 4 (1989), 303-314.
S. Haykin, “Neural Networks - A Comprehensive Foundation”, Prentice Hall, 2ed., 1998.
X. He, A. Lapedes, “Nonlinear Modeling and Prediction by Successive Approximations using Radial Basis Functions”, Technical Report, Los Alamos National Laboratory, 1991.
J.-S.R. Jamg, C.-T. Sun, Functional equivalence between radial basis function networks and fuzzy inference systems, IEEE Transactions on Neural Networks, 4 (1993), 156-159.
W.W.Y. Ng, A. Dorado, D.S. Yeung, W. Pedrycz, E. Izquierdo, Image classification with the use of radial basis function neural networks and the minimization of the localized generalization error. Pattern Recognition 40, No. 1 (2007), 19-32.
M.J.L. Orr, Regularization in the selection of radial basis function centres, Neural Computation, 7, No. 3 (1995), 606-623.
M.A.S. Potts, D.S. Broomhead, Time series prediciotn with a radial basis function neural network, SPIE Adaptive Signal Processing, 1565 (1991), 255-266.
M.J.D. Powell. Radial basis function approximations to polynomials, in “Proc. 12th Hiennial Numerical Analysis Conf.” (Dundee), pp. 223-241, 1987.
A. Sang, S.Q. Li, A predictability analysis of network traffic. in “Conference on Computer Communications”, IEEE Infocom, New York, Mar. 2000.
D. Veitch, P. Abry, A wavelet based joint estimator of the parameters of longrange dependence, IEEE Trans. Inform. Theory–Special Issue on Multiscale Statistical Signal Analysis and Its Applications 45, No. 3 (1999), 878-897.
F.H.T. Vieira, “Predição de Tráfego em Redes de Comunicações utilizando Redes Neurais e Análise Wavelet - Alocação Dinâmica de Largura de Faixa”. Dissertação de mestrado. Universidade Federal de Goiás, Goiânia, Goiás, Brasil,2002.
D.F. Walnut, “An Introduction to Wavelet Analysis”. Birkh¨auser Boston, 1ed., 2004.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Direitos Autorais
Autores de artigos publicados no periódico Trends in Computational and Applied Mathematics mantêm os direitos autorais de seus trabalhos. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Os autores concedem ao periódico o direito de primeira publicação.
Propriedade Intelectual e Termos de uso
O conteúdo dos artigos é de responsabilidade exclusiva dos autores. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Esta licença permite que os artigos publicados sejam reutilizados sem permissão para qualquer finalidade, desde que o trabalho original seja corretamente citado.
O periódico encoraja os Autores a autoarquivar seus manuscritos aceitos, publicando-os em blogs pessoais, repositórios institucionais e mídias sociais acadêmicas, bem como postando-os em suas mídias sociais pessoais, desde que seja incluída a citação completa à versão do website da revista.