Optimal Vaccination Campaigns Using Stochastic SIR Model and Multiobjective Impulsive Control

Autores

DOI:

https://doi.org/10.5540/tcam.2021.022.02.00179

Palavras-chave:

Planning of vaccination campaigns, Multiobjective optimization, Impulsive control, Stochastic SIR

Resumo

A multiobjective impulsive control scheme is proposed to give answers on how optimal vaccination campaigns should be implemented, regarding two conflicting targets: making the total number of infecteds small and the vaccination campaign as handy as possible.
In this paper, a stochastic SIR model is used to better depict the characteristics of a disease in practical terms, where little influences may lead to sudden and unpredictable changes in the behavior of transmissions. This model is extended to analyze the effects of impulsive vaccinations in two phases: the transient regime control, taking into account the necessity to reduce the number of infected individuals to an acceptable level in a finite time, and the permanent regime control, that will act with fixed vaccinations to avoid another outbreak. A parallel version of NSGA-II is used as the multiobjective optimization machinery, considering both the probability of eradication and the vaccination campaign costs. The final result using the proposed framework nondominated policies that can guide for public managers to decide which is the best procedure to be taken depending on the present situation.

Biografia do Autor

R. T. N. Cardoso, Departamento de Matemática - Centro Federal de Educação Tecnológica de Minas Gerais

Atualmente é professor associado do Centro Federal de Educação Tecnológica de Minas Gerais, no Departamento de Matemática. Possui graduação em Matemática Computacional pela Universidade Federal de Minas Gerais (2002), mestrado em Matemática pela Universidade Federal de Minas Gerais (2005) e doutorado em Engenharia Elétrica pela Universidade Federal de Minas Gerais (2008). Tem experiência na área de Matemática Aplicada, com ênfase em Otimização, atuando principalmente no Programa de Pós-Graduação em Modelagem Matemática e Computacional nos seguintes temas: controle da dengue, otimização de carteiras de investimento, modelos SIR e MBI, modelos presa-predador, otimização multiobjetivo, controle impulsivo, programação dinâmica.

Referências

References

W. Kermack and A. McKendrick, “A contribution to the mathematical theory of epidemics,” Proceedings of the Royal Society of London Series A Mathemat- ical and Physical Sciences, vol. 115, pp. 700–721, 1927.

R. Cardoso and R. Takahashi, “Solving impulsive control problems by discrete- time dynamic optimization methods,” Tendências em Matemática Aplicada e Computacional, vol. 9, no. 1, pp. 21–30, 2008.

A. Da Cruz, R. Cardoso, and R. Takahashi, “Multi-objective design with a stochastic validation of vaccination campaigns,” in IFAC Workshop on Control Applications of Optimization, vol. 7, pp. 289–294, 2009.

A. da Cruz, R. Cardoso, and R. Takahashi, “Multiobjective synthesis of robust vaccination policies,” Applied Soft Computing, vol. 50, pp. 34–47, 2017.

T. Bäck, Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, USA, 1996.

W.R.EspositoandC.A.Floudas,“Deterministicglobaloptimizationinnonlin- ear optimal control problems,” Journal of Global Optimization, vol. 17, no. 1-4, pp. 97–126, 2000.

T. Britton, “Stochastic epidemic models: a survey,” Mathematical biosciences, vol. 225, no. 1, pp. 24–35, 2010.

R. Kuske, L. Gordillo, and P. Greenwood, “Sustained oscillations via coherence resonance in sir,” Journal of theoretical biology, vol. 245, no. 3, pp. 459–469, 2007.

C. DENG and H. GAO, “Stability of svir system with random perturbations,” International Journal of Biomathematics, vol. 5, no. 04, 2012.

F. Ball and O. Lyne, “Optimal vaccination policies for stochastic epidemics among a population of households,” Mathematical Biosciences, vol. 177, pp. 333–354, 2002.

E. Tornatore, S. Buccellato, and P. Vetro, “On a stochastic disease model with vaccination,” Rendiconti del Circolo Matematico di Palermo, vol. 55, no. 2, pp. 223–240, 2006.

H. Hethcote, “The mathematics of infectious diseases,” Preprints of the IFAC Workshop on Control Applications of Optimisation, vol. 42, no. 4, pp. 599–653, 2000.

R. M. Anderson and R. M. May, “Infectious diseases of humans: dynamics and control,” 1992.

F. Brauer, P. Driessche, and J. Wu, Mathematical Epidemiology (Lecture Notes in Mathematics). Springer, 2008.

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential

Equations (Applications is Mathematics). Springer, 1992.

D. Higham, “An algorithmic introduction to numerical simulation of stochastic differential equations,” SIAM review, pp. 525–546, 2001.

R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo method, vol. 707. Wiley-interscience, 2008.

S. Plotkin, W. Orenstein, and P. Offit, Vaccines, vol. 707. Elsevier Health Sciences, 5th ed., 2008.

A. da Cruz, R. Cardoso, and R. Takahashi, “Multiobjective dynamic opti- mization of vaccination campaigns using convex quadratic approximation local search,” in Evolutionary Multi-Criterion Optimization, pp. 404–417, Springer, 2011.

A. C. S. Dusse and R. T. N. Cardoso, “Using a stochastic SIR model to de- sign optimal vaccination campaigns via multiobjective optimization,” vol. 1, BIOMAT, 2019.

K. Adam and R. T. N. Cardoso, “Optimal multiobjective pulse vaccination campaigns in stochastic sir model,” vol. 1, SBMAC, 2019.

C. A. C. Coello, G. B. Lamont, and D. A. V. Veldhuizen, Evolutionary Algo- rithms for Solving Multi-Objective Problems. Springer, 2007.

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley Longman, Inc., 1989.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiob- jective genetic algorithm: Nsga-ii,” Evolutionary Computation, IEEE Transactions on, vol. 6, no. 2, pp. 182–197, 2002.

Downloads

Publicado

2021-06-28

Como Citar

Cardoso, R. T. N., Dusse, A. C., & Adam, K. (2021). Optimal Vaccination Campaigns Using Stochastic SIR Model and Multiobjective Impulsive Control. Trends in Computational and Applied Mathematics, 22(2), 201–220. https://doi.org/10.5540/tcam.2021.022.02.00179

Edição

Seção

Artigo Original