Different Numerical Inversion Algorithms of the Laplace Transform for the Solution of the Advection-Diffusion Equation with Non-local Closure in Air Pollution Modeling
DOI:
https://doi.org/10.5540/tema.2018.019.01.43Palavras-chave:
Non-local closure, numerical inversion, pollutant dispersionResumo
In this paper, a three-dimensional solution of the steady-state advection-diffusion equation is obtained applying the Generalized Integral Advection Diffusion Multilayer Technique (GIADMT), considering non-local closure for turbulent flow. Two different parameterizations were considering for the countergradient term and different methods of numerical inversion for inverse Laplace transform. The results were compared with the experimental data of Copenhagen experiment by an evaluation of statistical indices to analyse the solution of the equation through the methods of numerical inversion. Differents parameterizations for the vertical turbulent eddy diffusivity and wind profile were utilized. The results show a good agreement with the experiment and the methods of numerical inversion for inverse Laplace transform show same efficacy.
Referências
J. Abate, P. Valkó, Multi-precision Laplace transform inversion, Int. J. Numer. Methods Eng. , 60 (2004), 979-993.
C. P. Costa, M. T. Vilhena, D. M. Moreira, T. Tirabassi, Semi-analytical solution of the steady three-dimensional advection-diffusion equation in the planetary boundary layer, Atmos. Environ. , 40 (2006), 5659-5669.
R. M. Cotta, Integral transforms in computational heat and fluid fow, Boca Raton, Florida: CRC Press, 1993.
K. S. Crump, Numerical Inversion of Laplace Transforms Using a Fourier series approximation, J. ACM , 23 , No. 1 (1976), 89-96.
J. W. M. Cuijpers, A. A. M. Holtslag, Impact of skewness and nonlocal effects on scalar and buoyancy fluxes in convective boundary layers,
J. Atmos. Sci. , 55 (1998), 151-162.
J. W. Deardor, Theoretical expression for the countergradient vertical heat flux, J. Geophys. Res. , 77 (1972), 5900-5904.
G. A. Degrazia, D. M. Moreira, M. T. Vilhena, Derivation of an eddy diffusivity depending on source distance for vertically inhomogeneous turbulence in a convective boundary layer, J. Appl. Meteor. , (2001), 1233-1240.
G. A. Degrazia, U. Rizza, C. Mangia, T. Tirabassi, Validation of a new turbulent parameterization for dispersion models in convective conditions,
Boundary-Layer Meteor. , 85 , No. 2 (1997), 243-254.
S. E. Gryning, E. Lyck, The Copenhagen Tracer Experiments: Reporting of Measurements, Riso National Laboratory, 2002.
S. R. Hanna, Condence limits for air quality models, as estimated by bootstrap and jackknife resampling methods, Atmos. Environ. , 23 (1989), 1385-1395.
J. S. Irwin, A theoretical variation of the wind profile power-law exponent as a function of surface roughness and stability, Atmos. Environ. , 13 , No. 1 (1979), 191-194.
D. M. Moreira, M. T. Vilhena, T. Tirabassi, C. P. Costa, B. Bodmann, Simulation of pollutant dispersion in the atmosphere by the laplace transform: The ADMM approach, Water, Air, Soil Pollut. , 77 , No. 1-4 (2006), 411-439.
Moreira, D.M., Moraes, A.C., Goulart, A.G., Albuquerque, T.T.A., 2014. A contribution to solve the atmospheric diffusion equation with eddy diffusivity depending on source distance. Atmospheric Environment 83, 254-259.
A. H. Panofsky, A. J. Dutton, Atmospheric Turbulence, John Wiley & Sons, New York, 1984.
J. Pleim, J. Chang, A non-local closure model for vertical mixing in the convective boundary layer, Atmos. Environ. , 26A , No. 6 (1992), 965-981.
D. R. Roberti, H. F. Campos Velho, G. A. Degrazia, Identifing counter-gradient term in atmospheric convective boundary layer, Inverse Probl. Sci. Eng. , 12 , No. 3 (2004), 329-339.
Z. Sorbjan, Structure of the Atmospheric Boundary Layer, Prentice Hall, 1989.
A. H. Stroud, D. Secrest, Gaussian Quadrature Formulas, Prentice Hall, Inc., Englewood Clis, N. J., 1966.
R. B. Stull, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, Holanda, 1988.
Downloads
Arquivos adicionais
Publicado
Como Citar
Edição
Seção
Licença
Direitos Autorais
Autores de artigos publicados no periódico Trends in Computational and Applied Mathematics mantêm os direitos autorais de seus trabalhos. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Os autores concedem ao periódico o direito de primeira publicação.
Propriedade Intelectual e Termos de uso
O conteúdo dos artigos é de responsabilidade exclusiva dos autores. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Esta licença permite que os artigos publicados sejam reutilizados sem permissão para qualquer finalidade, desde que o trabalho original seja corretamente citado.
O periódico encoraja os Autores a autoarquivar seus manuscritos aceitos, publicando-os em blogs pessoais, repositórios institucionais e mídias sociais acadêmicas, bem como postando-os em suas mídias sociais pessoais, desde que seja incluída a citação completa à versão do website da revista.