Complex variational calculus with mean of (min, +)-analysis
DOI:
https://doi.org/10.5540/tema.2017.018.03.385Keywords:
Variational Calculus, Lagrangian, Hamiltonian, Action, Euler-Lagrange and Hamilton-Jacobi equations, complex (min, )-analysis, Maxwell’s equations, Born-Infeld theory.Abstract
One develops a new mathematical tool, the complex (min, +)-analysis which permits to define a new variational calculus analogous to the classical one (Euler-Lagrange and Hamilton Jacobi equations), but which is well-suited for functions defined from C^n to C. We apply this complex variational calculus to Born-Infeld theory of electromagnetism and show why it does not exhibit nonlinear effects.
References
[BB96] I. Bialynicki-Birula. Photon wave function. E. Wolf (eds.), Progress in Optics, Elsevier, Amsterdam, 80:1588–1590, 1996.
[BI33] M. Born and L. Infeld. Foundations of the new field theory. Nature,
:1004, 1933.
[Bor37] M. Born. Théorie non linéaire du champ électromagnétique. Ann. Inst. H. Poincaré, 7(1):155–261, 1937.
[Bre98] D. Breche. Bps states of the non-abelian born-infeld action. Phys. Lett., 442(B):117–124, 1998.
[BW99] M. Born and E. Wolf. Principles of optics. Cambridge University, 7th
edition, 1999.
[dM44] P.L. de Maupertuis. Accord de différentes lois de la nature qui avaient jusqu’ici paru incompatibles. Mémoires de l’Académie Royale des Sciences, Paris, pages 417–426, 1744.
[dM46] P.L. de Maupertuis. Les lois du mouvement et du repos déduites d’un principe métaphysique. Mémoire Académie Berlin, page 267, 1746.
[Ein99] A. Einstein. A generalized theory of gravitation. Rev. Mod. Phys., 20:35–39, 1999.
[Eul44] L. Euler. Methodus Inveniendi Lineas Curvas Maximi Minive Proprietate Gaudentes. Bousquet, Lausanne et Geneva, 1744.
[Eva98] L. C. Evans. Partial differential equations. Graduate Studies in Mathematics 19, American Mathematical Society, pages 123–124, 1998.
[Gon96] M. Gondran. Analyse minplus. C. R. Acad. Sci. Paris, 323:371–375, 1996.
[Gon99] M. Gondran. Convergences de fonctions à valeurs dans R k et analyse minplus complexe. C. R. Acad. Sci. Paris, 329:783–788, 1999.
[Gon01] M. Gondran. Analyse minplus complexe. C. R. Acad. Sci. Paris, 333:592–598, 2001.
[HG02] J. Safko H. Goldstein, C. Poole. Classical mechanics. 3rd Edition, San Francisco : Addison-Wesley, 2002.
[Jac99] J.D. Jackson. Classical Electrodynamics. John Wiley and Sons, 3rd edition, 1999.
[JRF73] W. Greiner J. Rafelski and L.P. Fulcher. Superheavy elements and non-linear electrodynamics. Nuovo Cimento, 13(B):135, 1973.
[Lag88] J.L. Lagrange. Mécanique Analytique. Gauthier-Villars, Paris, translated by V. Vagliente and A. Boissonade (Klumer Academic, Dordrecht, 2001), 2nd edition, 1888.
[L.L70] E.Lifchitz L.Landau. Classical theory of fields. Mir, Moscow, 1970.
[LL76] L.D. Landau and E.M. Lifshitz. Mechanics, Course of Theoretical Physics. Buttreworth-Heinemann, London, 1976.
[Mas87] V. Maslov. Operational calculus. Mir, Moscow, 1987.
[MB34] L. Infeld M. Born. Foundations of the new field theory. Proc. Roy. Soc. London, 144(A):425–451, 1934.
[MG03] R. Hoblos M. Gondran. Complex calculus of variations. Kybernetika Max-Plus special issue, 39(2):677–680, 2003.
[MG08] M. Minoux M. Gondran. Graphs, Dioids and Semirings. Springer, 2008.
[MG14] A. Kenoufi M. Gondran. Numerical calculations of Hölder exponents for the Weierstrass functions with (min,+)-wavelets. Trends in Applied and Computational Mathematics, 15(3), 2014.
[MG16] T. Lehner M. Gondran, A. Kenoufi. Multi-fractal analysis for riemann
serie and mandelbrot binomial measure with (min, +)-wavelets. Trends in
Applied and Computational Mathematics, 17(2):247–263, 2016.
[Min08] H. Minkowski. Die grundgleichungen für die elektromagnetischen vorgänge in bewegten körpern. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 53:111, 1908.
[P.A58] P.A.M.Dirac. The principles of Quantum Theory. Clarendon Press, Oxford, 4th edition, 1958.
[Sch81] L.S. Schulmann. Techniques and Applications of Path Integration. John Wiley & Sons, New York, 1981.
[SGS98] F.A. Schaposnik S. Gonorazky, C. Nunez and G. Silva. Bogomol’nyi bounds and the supersymmetric born-infeld theory. Nucl. Phys., B 531(B):168–184, 1998.
[Sil07] L. Silberstein. Nachtrag zur abhandlung über electromagnetische grundgleichungen in bivektorieller behandlung. Ann. Phys. Lpz., 24:783, 1907.
[Sil24] L. Silberstein. The theory of relativity. Macmillan and Co Ltd, London, 1924.
[Tho98] L. Thorlaciu. Born-infeld string as a boundary conformal field theory. Phys. Rev. Lett., 80:1588–1590, 1998.
[VM92] S.N. Samborski V. Maslov. Idempotent analysis. Advances in Soviet Math-ematics, American Mathematical Society, 13, 1992.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.