Números de Stirling do Primeiro Tipo e as Relações de Girard
DOI:
https://doi.org/10.5540/tcam.2023.024.04.00745Keywords:
Polinômios, relações de Girard, números de StirlingAbstract
O presente artigo trata-se do polinômio de Stirling do primeiro tipo, que é um caso particular do estudo de polinômios em várias indeterminadas sobre o anel dos inteiros e existem relações entre os coeficientes e as respectivas raízes de uma dada equação algébrica. A ideia consiste na expansão de uma classe de polinômios nas indeterminadas x, x_1, x_2], ..., x_n \in \mathbb{Z}, definidos por p_n(x) = \prod_{j=1}^{n}$, fixado um inteiro n positivo. A ideia é mais particular ainda, pois provém das relações de Girard do estudo de polinômios homogêneos e simétricos que consiste em estudar polinômios em \mathbb{A}[x]$, cujos coeficientes estão no anel \mathbb{A} = \mathbb{Z}[x_1, x_2, ... , x_n] e além disso as raízes inteiras particulares nas relações de Girard, em questão, são x_1 = 0, x_2 = −1, ..., x_n = −(n − 1) gerando interessantes identidades algébricas cuja natureza combinatória é evidente e o coeficiente das potências de x em p_n(x), nesse caso, pode ser resposta de diversos problemas de contagem modelado por meio dessa função geradora, mais especificamente, a sequência associada a p_n(x) geram os números de Stirling do primeiro tipo.
References
A. Hefez and M. L. Vilela, Polinômios e Equações Algébricas. Rio de Janeiro: SBM, 2012.
A. F. A. Vale, “As diferentes estratégias de resolução da equação do segundo grau,” Master’s thesis, Universidade Federal Rural do Semi-Árido, Mossoró, RN, 2013.
J. Kovalina, A Unified Interpretation of the Binomial Coefficients, the Stirling
Numbers, and the Gaussian Coefficients. Washington: The American
Mathematical Monthly, 2000.
A. Mansour and M. Schork, Commutation Relations, Normal Ordering, and
Stirling Numbers. New York: Chapman and Hall, 2016.
N. A. Silva, “Os números de stirling,” Master’s thesis, Universidade Federal da Grande Dourados, Dourados, MS, 2018.
G. F. Pinheiro, I. M. Craveiro, and Naiguiel Alventino da Silva, “Números de stirling do primeiro tipo,” Professor de Matemática Online, vol. 8, pp. 590 – 605, 2020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.