Some Special Integer Partitions Generated by a Family of Functions
DOI:
https://doi.org/10.5540/tcam.2023.024.04.00717Keywords:
Integer partition, mock theta function, matrix representation, partition identityAbstract
In this work, inspired by Ramanujan’s fifth order Mock Theta function f1(q), we define a
collection of functions and look at them as generating functions for partitions of some integer n containing at least m parts equal to each one of the numbers from 1 to its greatest part s, with no gaps.We set a two-line matrix representation for these partitions for any m ≥ 2 and collect the values of the sum of the entries in the second line of those matrices. These sums contain information about some parts of the partitions, which lead us to closed formulas for the number of partitions generated by our functions, and partition identities involving other simpler and well known partition functions.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.