Stochastic Modeling of a Measles Outbreak in Brazil

Authors

DOI:

https://doi.org/10.5540/tcam.2023.024.03.00459

Keywords:

Stochastic epidemiological models, SIR model, Measles outbreak

Abstract

Development of mathematical models and its numerical implementations are essential tools in epidemiological modeling. Susceptible-Infected-Recovered (SIR) compartmental model, proposed by Kermack and McKendrick, in 1927, is a widely used deterministic model which serves as a basis for more involved mathematical models. In this work, we consider two stochastic versions of the SIR model for analysing a measles outbreak in Ilha Grande, Rio de Janeiro, in 1976; Continuous Time Markov Chain and Stochastic Differential Equations.  The SIR Continuous Time Markov Chain model is used to extract specific information from the measles outbreak, obtaining results in excellent agreement with the reported epidemic values. Numerical simulations are performed in Python.

Author Biographies

M. Lau, Universidade do Estado do Rio de Janeiro

Programa de Pós-Graduação em Ciências Computacionais

Z. G. Arenas, Universidade do Estado do Rio de Janeiro

Departamento de Matemática Aplicada

References

A. Düx, S. Lequime, L. V. Patrono, B. Vrancken, S. Boral, J. F. Goga-

rten, A. Hilbig, D. Horst, K. Merkel, B. Prepoint, S. Santibanez, J. Schlot-

terbeck, M. A. Suchard, M. Ulrich, N. Widulin, A. Mankertz, F. H. Leen-

dertz, K. Harper, T. Schnalke, P. Lemey, and S. Calvignac-Spencer, “Measles virus and rinderpest virus divergence dated to the sixth century bce,” Science, vol. 368, no. 6497, pp. 1367–1370, 2020.

E. A. S. Medeiros, “Entendendo o ressurgimento e o controle do sarampo no Brasil, volume = 33, year = 2020,” Acta Paulista de Enfermagem [online], no. e-EDT20200001.

F. Brauer, “Compartmental models in epidemiology,” in Mathematical Epidemiology, pp. 19–79, Springer, 2008.

L. J. S. Allen, An Introduction to Stochastic Processes with Applications to Biology. Texas, USA: Chapman and Hall/CRC, 2010.

L. J. S. Allen, “An introduction to stochastic epidemic models,” in Mathematical Epidemiology, pp. 81–130, Springer, 2008.

W. O. Kermack and A. G. McKendrick, “A contribution to the mathematical theory of epidemics,” The Royal Society, pp. 700–721, 1927. Vol. 115, No. 772.

N. A. Araújo Filho and J. R. Coura, “Surto epidêmico de sarampo na Ilha

Grande, Rio de Janeiro, Brasil,” Revista da Sociedade Brasileira de Medicina Tropical, vol. 13, no. 1, pp. 147–155, 1980.

P. Whittle, “The outcome of a stochastic epidemic – A note on Bailey’s paper,” Biometrika, vol. 42, no. 1/2, pp. 116–122, 1955.

F. G. Foster, “A note on Bailey’s and Whittle’s treatment of a general stochastic epidemic,” Biometrika, vol. 33, pp. 123–125, 1955.

E. Szusz, L. Garrison, and C. Bauch, “A review of data needed to parameterize a dynamic model of measles in developing countries,” BMC Research Notes, vol. 3, no. 75, 2010

Downloads

Published

2023-07-20

How to Cite

Lau, M., & Arenas, Z. G. (2023). Stochastic Modeling of a Measles Outbreak in Brazil. Trends in Computational and Applied Mathematics, 24(3), 459–473. https://doi.org/10.5540/tcam.2023.024.03.00459

Issue

Section

Original Article