Stable Bi-Maps on Surfaces and Their Graphs

Authors

DOI:

https://doi.org/10.5540/tcam.2023.024.02.00337

Keywords:

Stable maps, $\mathcal{RM}$-graphs, closed surfaces

Abstract

In this paper we study stable bi-maps F = (f1, f2): M →R×R^2 from a global viewpoint,
where M is a smooth closed orientable surface and f1: M→R, f2: M→R^2 are stable maps.We associate a graph to F, so-called RM-graph and study its properties. The RM-graph captures more information about the topological structure of M than other graphs that appear in literature. Moreover, some graph realization theorems are obtained.

Author Biographies

C. Mendes de Jesus, Universidade Federal de Juiz de Fora

Departamento de Matemática, Juiz de Fora-MG

E. Boizan Batista, Universidade Federal do Cariri

Centro de Ciências e Tecnologia, Juazeiro do Norte-CE

J. C. F. Costa, Universidade Estadual Paulista (UNESP)

Instituto de Biociências, Letras e Ciências Exatas, Câmpus de São José do Rio Preto-SP, Departamento de Matemática

References

V.I. Arnold, emph{Topological classification of Morse functions

and generalisations of Hilbert's 16-th problem}, Math. Phys. Anal.

Geom. Vol. 10 (2007) 227--236.

E.B. Batista, J.C.F. Costa, J.J. Nu~no-Ballesteros,

emph{The Reeb graph of a map germ from $mathbb{R}^3$ to $mathbb{R}^2$ with

isolated zeros}, Proc. Edinb. Math. Soc. (2) 60 (2017), no. 2,

--348.

E.B. Batista, J.C.F. Costa, J.J. Nu~no-Ballesteros, emph{The Reeb graph of a map germ from $mathbb{R}^3$ to $mathbb{R}^2$ without isolated zeros}, Bull. Braz. Math. Soc. (N.S.) 49 (2018), no. 2, 369-394. .

S. Biasotti, D. Giorgi, M. Spagnuolo, B. Falcidieno,

emph{Reeb graphs for shape analysis and applications}, Theoretical Computer Science 392 (2008) 5-22.

M. Golubitsky, V. Guillemin, emph{Stable mappings and their

singularities}, Graduate Texts in Mathematics 14, Springer, New

York, 1973.

D. Hacon, C. Mendes de Jesus, M.C. Romero Fuster, emph{Stable maps from surfaces to the plane with prescribed branching

data}, Topology and its Appl. 154 (2007) 166--175.

E.A. Kudryavtseva, emph{Realization of smooth functions on surfaces as height functions}, Sb. Math., 190:3 (1999)

--405.

Y. Masumoto, O. Saeki, emph{A smooth function on a manifold with given Reeb graph}, Kyushu J. Math. 65(1), 75--84 (2011).

T. Ohmoto, F. Aicardi, emph{First Order Local Invariants of Apparent Coutours}, Topology, 45 (2006) 27-45.

S. Pirzada, emph{Applications of graph theory}, Proc. Appl. Math. Mech. 7, 2070013

(2013).

G. Reeb, emph{Sur les points singuliers d'une forme de Pfaff completement int'egrable ou d'une fonction num'erique}, C. R. Acad. Sci. Paris 222 (1946) 847--849.

R. Thomas, emph{A combinatorial construction of a non-measurable set}, American Math. Monthly 92 (1985) 421--422.

H. Whitney, emph{On singularities of mappings of Euclidean spaces. I. Mappings of the Plane into the Plane}, Ann. of Math. 62 (1955) 374-410.

Downloads

Published

2023-05-24

How to Cite

Mendes de Jesus, C., Boizan Batista, E., & F. Costa, J. C. (2023). Stable Bi-Maps on Surfaces and Their Graphs. Trends in Computational and Applied Mathematics, 24(2), 337–356. https://doi.org/10.5540/tcam.2023.024.02.00337

Issue

Section

Original Article