Sparse Estimation of the Precision Matrix and Plug-In Principle in Linear Discriminant Analysis for Hyperspectral Image Classification
DOI:
https://doi.org/10.5540/tcam.2022.023.03.00595Abstract
In this paper, a new method for supervised classification of hyperspectral images is proposed for the case in which the size of the training sample is small. It consists of replacing in the Mahalanobis distance the maximum likelihood estimator of the precision matrix by a sparse estimator. The method is compared with two other existing versions of \textit{LDA} sparse, both in real and simulated images.Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.