Construction of Complex Lattice Codes via Cyclotomic Fields

Authors

  • E. D. Carvalho UNESP/Ilha Solteira
  • A. A. Andrade UNESP/São José do Rio Preto
  • T. Shah University of Quaid-i-Azam
  • C. C. Trinca Federal University of Tocantins

DOI:

https://doi.org/10.5540/tcam.2022.023.01.00033

Abstract

Through algebraic number theory and Construction $A$ we extend an algebraic procedure which generates complex lattice codes from the polynomial ring \mathbb{F}_{2}[x]/(x^{n}-1), where \mathbb{F}_{2}=\{0,1\}, by using ideals from the generalized polynomial ring \frac{\mathbb{F}_{2}[x,\frac{1}{2}\mathbb{Z}_{0}]}{((x^{\frac{1}{2}})^{n}-1)} through the ring of integers $\mathcal{O}_{\mathbb{L}}$ of the cyclotomic field \mathbb{L}=\mathbb{Q}(\zeta_{2^{s}}), where \zeta_{2^{s}} is a 2^{s}-th root of the unit, with s>2.

Downloads

Published

2022-03-25

How to Cite

Carvalho, E. D., Andrade, A. A., Shah, T., & Trinca, C. C. (2022). Construction of Complex Lattice Codes via Cyclotomic Fields. Trends in Computational and Applied Mathematics, 23(1), 33–50. https://doi.org/10.5540/tcam.2022.023.01.00033

Issue

Section

Original Article