A Incidência da Dengue Explicada por Variáveis Climáticas na Região Metropolitana do Rio de Janeiro

Authors

DOI:

https://doi.org/10.5540/tcam.2025.026.e01476

Keywords:

Epidemiologia, An´alise Multivariada, Series Temporais, Sensoriamento Remoto

Abstract

The increase in notifications on the incidence of dengue testify to the overload of the public health systems and calls attention to the improper use of public resources that could be used to fight poverty and the consequent income inequality. Although dengue is a vector-borne disease, it has been observed that populations living in areas with different urban, economic and demographic patterns are impacted differently by this arbovirus. Understanding how the temporal evolution of dengue occurred in recent years can provide healthcare officials with a more detailed knowledge of the dynamics of the spread of dengue and its vectors, thus assisting the decision-making process and orienting local authorities in organizing controls in endemic areas. To achieve this objective, some time series models for analysis and forecasting were proposed and adjusted to the field data. This work describes a study carried out for the municipalities of Guapimirim and Magé, located in the metropolitan area of Rio de Janeiro. The modelling of the time series was based on ARMAX models, which allow to estimate the relationship between the incidence of dengue and climatic variables.

Author Biography

L. Layter, Oswaldo Cruz Institute

Parasitic Diseases Laboratory, Tropical Medicine Program

References

Referências

M. G. Teixeira, M. L. Barreto, and Z. Guerra, “Fundação Nacional de Saúde.

Evolução temporal das doenças de notificações compulsória no Brasil 1980-

Boletim Eletrônico Epidmiologia Edição Especial,” Informe Epidemiológico do SUS, vol. 8, no. 4, pp. 5–33, 1999.

O. Franca, A História da Febre Amarela no Brasil-Rio de Janeiro, vol. Único.

Dengue explicada por variáveis climáticas 9

O. R. Causey, O. Maroja, and M. C. Azevedo, “Epidemia pelo vírus Mayaro

no Estado do Pará,” TEMA -Revista do Serviço Especial de Saúde Pública,

vol. 10, no. 1, pp. 152–154, 1976.

M. G. Teixeira, A. M. S. Andrade, M. d. C. N. Costa, J. S. M. Castro, F. L. S. Oliveira, C. S. B. Goes, M. M. Maia, E. B. Santana, B. T. B. Nunes, and P. F. C. Vasconcelos, “East/Central/South African Genotype Chikungunya Virus, Brazil, 2014,” Emerging Infectious Diseases, vol. 21, no. 5, pp. 906–908, 2015.

G. S. Campos, B. A. C. Andrade, and S. I. Sardi, “Zika vírus outbreak, Bahia, Brazil,” Emerging Infectious Diseases, vol. 21, no. 10, pp. 1885–1886, 2015.

M. T. Nunes, N. R. Farias, J. M. Vasconcelos, N. Golding, M. N. G. Kroemer, L. F. Olliveira, R. S. S. Azevedo, D. E. A. Silva, E. V. P. Silva, S. P. Silva, V. L. Carvalho, G. E. Coelho, A. C. R. Cruz, S. G. Rodrigues, J. L. C. Vianez, B. T. D. Nunes, R. B. Tesh, H. S. I, O. G. Pybus, and P. F. C. Vasoncelos, Emergence and potential for spread of Chikungunya virus in Brazil,” BMC Medicine, vol. 11, no. 3, pp. 480–496, 2015.

T. N. Lima-Camara, “Emerging arboviruses and public health challenges in Brazil,” Revista de Saúde Pública, vol. 102, no. 13, pp. 1–10, 2016.

WHO, Dengue haemorrhagic fever Diagnosis, treatment, prevention and control. Genebra: World Health Organization, 1997.

S. B. Halstead, “Dengue Virus-Mosquito Interactions,” Scott B. Halstead,

vol. 53, no. 1, pp. 273–291, 2008.

P. Gurugama, P. Garg, J. Perera, A. Wijewickrama, and S. L. Seneviratne,

“Dengue viral infections,” India Journal of Dermatology, vol. 55, no. 1, pp. 68–

, 2010.

D. Shepard, E. Undurraga, Y. Halasa, and J. Stanaway, “ The global economic

burden of dengue: a systematic analysis ,” The Lancet Infectious Diseases,

vol. 16, no. 8, pp. 935–941, 2016.

M. da Saúde, “Monitoramento dos casos de arboviroses urbanas transmitidas

pelo Aedes (dengue, chikungunya e Zika), Semanas Epidemiológicas 01 a 52,”

Boletim Epidemiológico 5, vol. 51, no. 2, pp. 1–21, 2020.

M. M. O. Campos, M. S. Rodrigues, I. A. D. Paploski, M. Kikuti, A. M. Kasper,

S. J. Cruz, T. L. Queiroz, A. S. Tavares, P. M. Santana, J. M. G. Araújo,

A. I. Ko, M. G. Reis, and G. S. Ribeiro, “Accuracy of Dengue Reporting by

National Surveillance System, Brazil,” Emerging Infectious Diseases, vol. 22,

no. 2, pp. 336–339, 2016.

D. J. Gubler, “Dengue and dengue hemorrhagic fever,” Clinical Microbiology

Reviews, vol. 11, no. 3, pp. 480–496, 1998.

Autor1 Autor2 Autor3 Autor4

D. Normile, “Surprising new dengue virus throws a spanner in disease control efforts,” Science, vol. 342, no. 6157, p. 415, 2013.

N. Vasilakis, N. Ooi, M. Rabaa, M. S, S. Widen, H. A. Perera, D and, A. Travassos Da Rosa, K. Bossart, R. Tesh, and E. Holmes, “The daemon in the forest-emergence of a new dengue serotype in SouthEast Asia,” Third International Conference on Dengue and Dengue Haemorrhagic Fever, Bangkok, Thailand, 2013.

L. C. M. S. Mustafa, C. Rasotgi, C. S. Jain, and L. C. V. Gupta, “Discovery

of fifth serotype of dengue virus (DENV-5): A new public health dilemma in

dengue control,” Medical Journal Armed Forces India, vol. 71, no. 1, pp. 67–70, 2015.

T. N. Vilches and C. P. Farreira, “Um Modelo para a Dengue com Influência Sazonal,” TEMA - Tendências em Matemática Aplicada e Computacional, vol. 14, no. 3, pp. 279–290, 2013.

A. Molter, L. R. Piovesan, R. Pergher, and V. M. C, “Controle ótimo em

epidemias de dengue,” Tema-Treds in Applied and Competational Mathematics, vol. 17, no. 2, pp. 129–142, 2016.

IBGE, “Censo Demográfico IBGE 2010 [Internet].,” Instituto Brasileiro de Geografia e Estatística, no. 1, pp. 1–378, 2010.

L. Silva, R. Cardoso, J. Fernandes, C. Silva, and A. Eiras, “Modelo entomológico determinístico sob efeito da pluviosidade para o Aedes aegypti e o Aedes albopictus,” TEMA - Tendências em Matemática Aplicada e Computacional,

vol. 19, no. 2, pp. 289–303, 2018.

L. Silva, A. Vasconcelos, C. R. Sanches, A.L., C. Fernandes, and A. Eiras, “Otimização mono-objetivo o controle do mosquito Aedes Aegypti por meio de um modelo de duas populações com influência de precipitação,” TEMA -Tendências em Matemática Aplicada e Computacional, vol. 20, no. 1, pp. 279–290, 2019.

J. D. Hamilton, Time Series Analysis. Princeton University Press, 1994.

Published

2025-04-16

How to Cite

L. Layter. (2025). A Incidência da Dengue Explicada por Variáveis Climáticas na Região Metropolitana do Rio de Janeiro. Trends in Computational and Applied Mathematics, 26(1), e01476. https://doi.org/10.5540/tcam.2025.026.e01476

Issue

Section

Original Article