Combinando Métodos de Aprendizado Supervisionado para a Melhoria da Previsão do Redshift de Galáxias
DOI:
https://doi.org/10.5540/tema.2020.021.01.117Keywords:
Aprendizado de máquina, stacking, densidades condicionais, cosmologiaAbstract
Um problema fundamental em cosmologia é estimar redshifts de galáxias com base em dados fotométricos. Por exemplo a Sloan Digital Sky Survey (SDSS) já coletou dados fotométricos relativos a cerca de um bilhão de objetos para os quais é necessário estimar os respectivos redshifts. Tradicionalmente, essa tarefa é resolvida utilizando-se métodos de aprendizado de máquina. Neste trabalho, mostramos como métodos existentes podem ser combinados de forma a se obter estimativas ainda mais precisas para os redshifts de galáxias. Abordamos este problema sob duas óticas: (i) estimação da regressão do redshift y nas covariáveis fotométricas x, E[Y|x], e (ii) estimação da função densidade condicional f(y|x). Aplicamos as técnicas propostas para um banco de dados provenientes do SDSS e concluímos que as predições combinadas são de fato mais precisas que os métodos individuais.
References
Almosallam, Ibrahim A. ; Jarvis, Matt J. ; Roberts, Stephen J.: GPZ: nonstationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts. In: Monthly Notices of the Royal Astronomical Society 462 (2016), Nr. 1, S. 726–739
Brammer, Gabriel B. ; Dokkum, Pieter G. ; Coppi, Paolo: EAZY: a fast,
public photometric redshift code. In: The Astrophysical Journal 686 (2008),
Nr. 2, S. 1503
Breiman, Leo: Random forests. In: Machine learning 45 (2001), Nr. 1, S.
–32
Chen, Tianqi ; Guestrin, Carlos: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining ACM, 2016, S. 785–794
Csabai, Istvan ; Budavari, Tamas ; Connolly, Andrew J. ; Szalay, Alexander S. ; Győry, Zsuzsanna ; Benitez, Narciso ; Annis, Jim ; Brinkmann, Jon ; Eisenstein, Daniel ; Fukugita, Masataka u. a.: The application of photometric redshifts to the SDSS early data release. In: The Astronomical Journal 125 (2003), Nr. 2, S. 580
Freeman, Peter E. ; Izbicki, Rafael ; Lee, Ann B.: A unified framework for constructing, tuning and assessing photometric redshift density estimates in a selection bias setting. In: Monthly Notices of the Royal Astronomical Society 468 (2017), Nr. 4, S. 4556–4565
Friedman, Jerome ; Hastie, Trevor ; Tibshirani, Robert: The elements of
statistical learning. Bd. 1. Springer series in statistics New York, 2001
Izbicki, R. ; Santos, T. M. d.: Machine Learning sob a ótica estatística. 2019 http://www.rizbicki.ufscar.br/sml
Izbicki, Rafael ; Lee, Ann B. u. a.: Converting high-dimensional regression to high-dimensional conditional density estimation. In: Electronic Journal of Statistics 11 (2017), Nr. 2, S. 2800–2831
Izbicki, Rafael ; Lee, Ann B. ; Freeman, Peter E.: Photo-z estimation: An example of nonparametric conditional density estimation under selection bias. In: The Annals of Applied Statistics 11 (2017), Nr. 2, S. 698–724
Sheldon, Erin S. ; Cunha, Carlos E. ; Mandelbaum, Rachel ; Brinkmann, J ; Weaver, Benjamin A.: Photometric redshift probability distributions for galaxies in the SDSS DR8. In: The Astrophysical Journal Supplement Series 201 (2012), Nr. 2, S. 32
Tibshirani, Robert: Regression shrinkage and selection via the lasso. In: Journal of the Royal Statistical Society: Series B (Methodological) 58 (1996), Nr. 1, S. 267–288
Turlach, Berwin A. ; Weingessel, Andreas: quadprog: Functions to solve quadratic programming problems. In: CRAN-Package quadprog (2007)
Wadadekar, Yogesh: Estimating photometric redshifts using support vector machines. In: Publications of the Astronomical Society of the Pacific 117 (2004), Nr. 827, S. 79
Wittman, D: What lies beneath: Using p(z) to reduce systematic photometric redshift errors. In: The Astrophysical Journal Letters 700 (2009), Nr. 2, S. L174
Yèche, Ch ; Petitjean, P ; Rich, J ; Aubourg, E ; Hamilton, J-Ch ;
Le Goff, J-M ; Paris, I ; Peirani, S ; Pichon, Ch ; Rollinde, E u. a.:
Artificial neural networks for quasar selection and photometric redshift determination. In: Astronomy & Astrophysics 523 (2010), S. A14
York, Donald G. ; Adelman, J ; Anderson Jr, John E. ; Anderson,
Scott F. ; Annis, James ; Bahcall, Neta A. ; Bakken, JA ; Barkhouser,
Robert ; Bastian, Steven ; Berman, Eileen u. a.: The sloan digital sky survey: Technical summary. In: The Astronomical Journal 120 (2000), Nr. 3, S. 1579
Zhang, Min-Ling ; Zhou, Zhi-Hua: ML-KNN: A lazy learning approach to multi-label learning. In: Pattern recognition 40 (2007), Nr. 7, S. 2038–2048
Zhou, Zhi-Hua: Ensemble methods: foundations and algorithms. CRC press, 2012
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.