Rotated Z^n-Lattices via Real Subfields of Q(\zeta_2r)
DOI:
https://doi.org/10.5540/tema.2019.020.03.445Keywords:
Lattices, cyclotomic fields, modulation design, fading channels, minimum product distance.Abstract
A method for constructing rotated Z^n-lattices, with n a power of 2, based on totally real subfields of the cyclotomic field Q(\zeta_{2^r}), where r\geq 4 is an integer, is presented. Lattices exhibiting full diversity in some dimensions n not previously addressed are obtained.References
A. A. Andrade, T. Shah & A. Khan. A note on linear codes over semigroup rings. TEMA - Thends in Applied and Computational Mathematics, 12(2) (2011), 79-89.
A. Ansari, T. Shah, Zia Ur-Rahman & A. A. Andrade. Sequences of primitive and non-primitive BCH codes. TEMA - Thends in Applied and Computational Mathematics, 19(2) (2018), 369-389.
A. A. Andrade, C. Alves & T. B. Carlos, Rotated lattices via the cyclotomic field Q(zeta_{2^r}), Internat. J. Appl. Math., 19, 2006, 321-331.
V. Bautista-Ancora & J. Uc-Kuk, The discriminant of Abelian number fields, Rocky Mountain J. Math., 47, 2017, 39-52.
E. Bayer-Fluckiger, Lattices and number fields, Algebraic geometry: Hirzebruch 70, Contemp. Math., 241, Amer. Math. Soc., Providence, RI, 1999, 69-84.
E. Bayer-Fluckiger, F. Oggier & E. Viterbo. New algebraic constructions of rotated Z^n-lattice constellations for the Rayleigh fading channel. IEEE Trans. Inform. Theory, 50 (2004), 702-714.
E. Bayer-Fluckiger, F. Oggier & E. Viterbo. Algebraic lattice constellations: bounds on performance, IEEE Trans. Inform. Theory, 52 (2006), 319-327.
J. Boutros, E. Viterbo, C. Rastello & J. C. Belfiore. Good lattice constellations for both Rayleigh fading and Gaussian channels. IEEE Trans. Inform. Theory, 42 (1996), 502-518.
M. O. Damen, K. Abed-Meraim & J. C. Belfiori. Diagonal algebraic space-time block codes. IEEE Trans. Inform. Theory, 48 (2002), 628-636.
P. Elia, B. A. Sethuraman & P. V. Kumar. Perfect space-time codes for any number of antennas. IEEE Trans. Inform. Theory, 53 (2007), 3853-3868.
S. Lang. Algebra, revised third edition, Springer-Verlag, New York (2003).
A. M. Odlyzko. Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results. J.
Théorie des Nombres de Bordeaux 2 (1990), 119-141.
K. H. Rosen. Elementary Number Theory and its Applications, sixth edition, Addison-Wesley, Reading, MA (2011).
L. Washington. Introduction to Cyclotomic Fields, second edition, Springer-Verlag, New York (1997).
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.