On BL-Algebras and its Interval Counterpart

Authors

  • Rui Paiva Instituto Federal de Educação, Ciência e Tecnologia do Ceará - IFCE http://orcid.org/0000-0002-1775-8489
  • Regivan Santiago Federal University of Rio Grande do Norte - UFRN
  • Benjamín Bedregal Federal University of Rio Grande do Norte - UFRN

DOI:

https://doi.org/10.5540/tema.2019.020.02.241

Keywords:

Fuzzy Logic, BL-Algebras, Intervals, Correctness Principle.

Abstract

Interval Fuzzy Logic and Interval-valued Fuzzy Sets have been widely investigated. Some Fuzzy Logics were algebraically modelled by Peter Hájek as BL-algebras. What is the algebraic counterpart for the interval setting? It is known from literature that there is a incompatibility between some algebraic structures and its interval counterpart. This paper shows that such incompatibility is also present in the level of BL-algebras. Here we show both: (1) the impossiblity of match imprecision and the correctness of the underlying BLimplication and (2) some facts about the intervalization of BL-algebras.

Author Biographies

Rui Paiva, Instituto Federal de Educação, Ciência e Tecnologia do Ceará - IFCE

Group for Logic, Language, Information, Theory and Applications - LoLITA

Sou graduado em Matemática pela Universidade Estadual do Ceará (UECE), possuo especialização em Ensino de Matemática pela UECE e mestrado acadêmico em Matemática pela Universidade Federal do Ceará (UFC). Atualmente cursando doutorado em Sistemas e Computação pelo Departamento de Informática e Matemática Aplicada da Universidade Federal do Rio Grande do Norte (UFRN). Além disso, sou Professor efetivo do Instituto Federal de Educação, Ciência e Tecnologia do Ceará - IFCE, com experiência na área de Matemática, com ênfase em Geometria e Topologia, e Computação, com ênfase em Matemática Computacional, atuando principalmente nos seguintes temas: variedades de Hadamard, funções de Busemann, teoria geométrica das folheações e Álgebra Universal, Teoria das Categorias, Lógicas não clássicas e Lógica Algébrica.

Regivan Santiago, Federal University of Rio Grande do Norte - UFRN

Group for Logic, Language, Information, Theory and Applications - LoLITA
Department of Informatics and Applied Mathematics - DIMAp

Benjamín Bedregal, Federal University of Rio Grande do Norte - UFRN

Group for Logic, Language, Information, Theory and Applications - LoLITA
Department of Informatics and Applied Mathematics - DIMAp

References

T. Hickey, Q. Ju, and M. H. Van Emden, “Interval arithmetic: From principles to implementation,”

J. ACM, vol. 48, pp. 1038–1068, Sept. 2001.

R. H. N. Santiago, B. R. C. Bedregal, and B. M. Acióly, “Formal aspects of correctness

and optimality of interval computations,” Formal Aspects of Computing, vol. 18, no. 2,

pp. 231–243, 2006.

P. Hajek, Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, 1998.

A. Di Nola, S. Sessa, F. Esteva, L. Godo, and P. Garcia, “The variety generated by

perfect BL-algebras: an algebraic approach in a fuzzy logic setting,” Annals of Mathematics

and Artificial Intelligence, vol. 35, no. 1, pp. 197–214, 2002.

A. Di Nola and L. Leu¸stean, “Compact representations of BL-algebras,” Archive for

Mathematical Logic, vol. 42, no. 8, pp. 737–761, 2003.

H. Bustince, “Interval-valued fuzzy sets in soft computing,” International Journal of

Computational Intelligence Systems, vol. 3, no. 2, pp. 215–222, 2010.

R. B. Kearfott and V. Kreinovich, eds., Applications of Interval Computations: An

Introduction, pp. 1–22. Boston, MA: Springer US, 1996.

R. E. Moore and F. Bierbaum, Methods and Applications of Interval Analysis (SIAM

Studies in Applied and Numerical Mathematics) (Siam Studies in Applied Mathematics,

). Soc for Industrial & Applied Math, 1979.

B. V. Gasse, C. Cornelis, and G. Deschrijver, “Interval-valued algebras and fuzzy logics.”

Downloads

Published

2019-07-29

How to Cite

Paiva, R., Santiago, R., & Bedregal, B. (2019). On BL-Algebras and its Interval Counterpart. Trends in Computational and Applied Mathematics, 20(2), 241. https://doi.org/10.5540/tema.2019.020.02.241

Issue

Section

Original Article