A Mathematical Model for Simulating Meteor Showers
DOI:
https://doi.org/10.5540/tema.2019.020.01.1Keywords:
Computational Modeling, Meteors, Meteor Showers, Stellarium.Abstract
This paper presents a mathematical model to simulate the trajectory of a meteor as seen by a single observer located anywhere on Earth. Our strategy is to define a new coordinate system, called Radiant Coordinate System, which is centered on the observer and has its z-axis aligned with the radiant. This new coordinate system allows us to describe the meteors’ path by applying a reduced number of equations in a simple solution. We also present a computational implementation of this model, which is developed as a new plug-in of Stellarium, a free and open-source planetarium software. Moreover, we show that our model can be used to simulate both meteor showers and sporadic meteors. In particular, meteor showers are simulated using data provided by real catalogs.Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.