Parallel Implementation of a Two-level Algebraic ILU(k)-based Domain Decomposition Preconditioner

Authors

  • Italo Cristiano L. Nievinski Faculdade de Engenharia Mecânica, PPGEM, UERJ - Universidade do Estado do Rio de Janeiro, 20550-900 Rio de Janeiro, RJ, Brasil
  • Michael Souza Departamento de Estatística e Matemática Aplicada DEMA UFC - Universidade Federal do Ceará, Campus do PICI, 60455-760, Fortaleza, CE, Brasil
  • Paulo Goldfeld Departamento de Matemática Aplicada, IM-UFRJ, Caixa Postal 68530, CEP 21941-909, Rio de Janeiro, RJ, Brasil
  • Douglas Adriano Augusto Fundação Oswaldo Cruz, Fiocruz, Av. Brasil, 4365, 21040-360 Rio de Janeiro, RJ, Brasil.
  • José Roberto P. Rodrigues PETROBRAS/CENPES Av. Horácio Macedo 950, Cidade Universitária, 21941-915 Rio de Janeiro, RJ, Brasil
  • Luiz Mariano Carvalho nstituto de Matemática e Estatística, IME, UERJ - Universidade do Estado do Rio de Janeiro, 20550-900 Rio de Janeiro, RJ, Brasil.

DOI:

https://doi.org/10.5540/tema.2018.019.01.59

Keywords:

Two-level preconditioner, domain decomposition, Krylov methods, linear systems, parallelism, PETSc

Abstract

We discuss the parallel implementation of a two-level algebraic ILU(k)-based domain decomposition preconditioner using the PETSc library. We present strategies to improve performance and minimize communication among processes during setup and application phases. We compare our implementation with an off-the-shelf preconditioner in PETSc for solving linear systems arising in reservoir simulation problems, and show that for some cases our implementation performs better.

Author Biography

Italo Cristiano L. Nievinski, Faculdade de Engenharia Mecânica, PPGEM, UERJ - Universidade do Estado do Rio de Janeiro, 20550-900 Rio de Janeiro, RJ, Brasil

Dsc Student in Mechanical Engineering at PPG-EM - Faculdade de Engenharia , UERJ

Downloads

Additional Files

Published

2018-05-05

How to Cite

Nievinski, I. C. L., Souza, M., Goldfeld, P., Augusto, D. A., Rodrigues, J. R. P., & Carvalho, L. M. (2018). Parallel Implementation of a Two-level Algebraic ILU(k)-based Domain Decomposition Preconditioner. Trends in Computational and Applied Mathematics, 19(1), 59. https://doi.org/10.5540/tema.2018.019.01.59

Issue

Section

Original Article