Diferenças Finitas Preservando as Propriedades de Energia de um Modelo de Difusão
DOI:
https://doi.org/10.1590/S2179-84512013005000004Abstract
Neste trabalho analisamos os aspectos numéricos e
computacionais da energia numérica associada a um problema de
difusão no domínio discreto do método das diferenças finitas. A
nível do contínuo a energia é decrescente e exponencialmente
estável. Aqui apresentamos em detalhes a análise de energia
numérica assegurando que ela preserva as mesmas propriedades
assintóticas do correspondente contínuo, desde que obedecido a
estabilidade numérica.
References
A. Tveito and R. Winther, Introduction to partial differential equations:
A computation approach. Springer-Verlag, (1998).
J. D. Smith, Numerical Solution of Partial Differential Equations:
Finite Difference Methods. Oxford Applied Mathematics and Computing Science Series, (1984).
J. E. M. Rivera, Estabilização de Semigrupos e Aplicações. Série de Métodos Matemáticos.
Laboratório Nacional de Computação Científica - LNCC - Rio de Janeiro, $(2008).
J. D. Murray, Mathematical Biology II - Spatial Models and
Biomedical Applications. Interdisciplinary Applied Mathematics,
Springer Vol. 18, (2003).
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.