Saddle Point and Second Order Optimality in Nondifferentiable Nonlinear Abstract Multiobjective Optimization

Authors

  • Lucelina Batista dos Santos Universidade Federal do Paraná
  • Marko Antonio Rojas-Medar Universidad del Bío-Bío - Campus Fernando May
  • Valeriano Antunes de Oliveira Universidade Estadual Paulista - Campus de São José do Rio Preto

DOI:

https://doi.org/10.5540/tema.2012.013.02.0179

Abstract

This article deals with a vector optimization problem with cone constraints in a Banach space setting. By making use of a real-valued Lagrangian and the concept of generalized subconvex-like functions, weakly efficient solutions are characterized through saddle point type conditions. The results, jointly with the notion of generalized Hessian (introduced in [Cominetti, R., Correa, R.: A generalized second-order derivative in nonsmooth optimization. SIAM J. Control Optim. 28, 789–809 (1990)]), are applied to achieve second order necessary and sufficient optimality conditions (without requiring twice differentiability for the objective and constraining functions) for the particular case when the functionals involved are defined on a general Banach space into finite dimensional ones.

Author Biographies

Lucelina Batista dos Santos, Universidade Federal do Paraná

Centro Politécnico - Setor de Ciências Exatas - Departamento de Matemática

Marko Antonio Rojas-Medar, Universidad del Bío-Bío - Campus Fernando May

Facultad de Ciencias - Departamento de Ciencias Básicas - Grupo de Matemática Aplicada

Valeriano Antunes de Oliveira, Universidade Estadual Paulista - Campus de São José do Rio Preto

Instituto de Biociências, Letras e Ciências Exatas - Departamento de Ciências de Computação e Estatística

References

J.P. Aubin, I. Ekeland, “Applied Nonlinear Analysis”, John Wiley & Sons, New York, 1984.

M.S. Bazaraa, H.D. Sherali and C.M. Shetty, “Nonlinear Programming: Theory and Algorithms”, Wiley-Interscience, New Jersey, 2006.

S. Bellaassali, A. Jourani, Lagrange multipliers for multiobjective programs with a general preference, Set-Valued Anal, 16 (2008), 229–243.

G. Bigi, Saddlepoint optimality criteria in vector optimization, in “Optimization in Economics, Finance and Industry” (A. Guerraggio et al., eds.), pp. 85-102, Datanova, Milan, 2002.

R.W. Chaney, Second order directional derivatives for nonsmooth functions, J. Math. Anal. Appl., 128 (1987), 495–511.

S.L. Chen, N.J. Huang, M.M. Wong, B-Semipreinvex functions and vector optimization problems in Banach spaces, Taiwanese J. Math., 11 (2007), 595–609.

F.H. Clarke, “Optimization and Nonsmooth Analysis”, John Wiley & Sons, New York, 1983.

R. Cominetti, R. Correa, A generalized second-order derivative in nonsmooth optimization, SIAM J. Control Optim., 28 (1990), 789–809.

B.D. Craven, “Control and Optimization”, Chapman & Hall, London, 1995.

N.O. Da Cunha, E. Polak, Constrained minimization under vector-valued criteria in finite dimensional spaces, J. Math. Anal. Appl., 19 (1967), 103–124.

H. Gfrerer, Second-order optimality conditions for scalar and vector optimization problems in Banach spaces, SIAM J. Control Optim., 45 (2006), 972–997.

J.B. Hiriart-Urruty, Approximating a second-order directional derivative for nonsmooth convex functions, SIAM J. Control Optim., 22 (1984), 43–56.

X.X. Huang and X.Q. Yang, Asymptotic analysis of a class of nonlinear penalty methods for constrained multiobjective optimization, Nonlinear Analysis, 47 (2001), 5573–5584.

J. Jahn, “Mathematical Vector Optimization in Partially Ordered Linear Spaces”, Peter Lang, Frankfurt, 1986.

D.G. Luenberger and Y. Ye, “Linear and Nonlinear Programmming”, Springer, New York, 2008.

J. Nocedal and S.J. Wright, “Numerical Optimization”, Springer, New York, 2006.

R. Osuna-Gómez, A. Rufián-Lizana, P. Ruiz-Canales, Duality in nondifferentiable vector programming, J. Math. Anal. Appl., 259 (2001), 462–475.

R.T. Rockafellar, “Convex Analysis”, Princeton, New Jersey, 1970.

L.B. Dos Santos, A.J.V. Brandão, R. Osuna-Gómez, M.A. Rojas-Medar, Necessary and sufficient conditions for weak efficiency in non-smooth vectorial optimization problems, Optimization, 58 (2009), 981–993.

A. Taa, Second-order conditions for nonsmooth multiobjective optimization problems with inclusion constraints, J. Glob. Optim., 50 (2011), 271–291.

X. Yang, Alternative theorems and optimality conditions with weakened convexity, Opsearch, 29 (1992), 125-135.

Published

2012-08-31

How to Cite

dos Santos, L. B., Rojas-Medar, M. A., & de Oliveira, V. A. (2012). Saddle Point and Second Order Optimality in Nondifferentiable Nonlinear Abstract Multiobjective Optimization. Trends in Computational and Applied Mathematics, 13(2), 179–191. https://doi.org/10.5540/tema.2012.013.02.0179

Issue

Section

Original Article