As Integrais de Mellin-Barnes e a Função de Fox
DOI:
https://doi.org/10.5540/tema.2011.012.02.0157Abstract
A partir do conceito de integrais de Mellin-Barnes, apresentamos a função de Fox e algumas de suas propriedades a fim de discutir a equação diferencial fracionária associada ao problema do telégrafo.References
[1] R.F. Ávila, M.J. Menon, Eikonal zeros in the momentum transfer space from proton-proton scattering: An empirical analysis, Eur. Phys. J., 54C (2008), 555–576.
[2] B.L.J. Braaksma, Asymptotic expansions and analytical continuation for a class of Barnes-integrals, Compositio Math., 15 (1962), 239–341.
[3] E. Capelas de Oliveira, “Funções Especiais com Aplicações”, Editora Livraria da Física, São Paulo, 2005.
[4] E. Capelas de Oliveira, J. Vaz Jr., FS. Costa, The fractional Schrödinger equation for delta potentials, (2010), Journal of Mathematical Physics (aceito).
[5] E. Capelas de Oliveira, J. Vaz Jr., Tunneling in fractional quantum mechanics, (2010) Submetido à publicação.
[6] M. Caputo, Vibrations of an infinite viscoelastic layer with a dissipative memory, J. Acoust. Soc. Amer., 56 (1974), 897–904.
[7] W. Chen, S. Holm, Physical interpretation of fractional diffusion-wave equation via lossy media obeying frequency power law, arXiv.org/abs/math-ph/0303040 (2003).
[8] Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math., 2003 (2003), 3413–3442.
[9] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, “Higher Transcendental Functions”, Vol.1, McGraw-Hill, New York, 1953.
[10] R. Figueiredo Camargo, A.O. Chiacchio, E. Capelas de Oliveira, Differentiation to fractional orders and the fractional telegraph equation, J. Math. Phys., 49 (2008), 033505.
[11] R. Figueiredo Camargo, R. Charnet, E. Capelas de Oliveira, On some fractional Green’s functions, J. Math. Phys., 50 (2009), 043514.
[12] R. Figueiredo Camargo, E. Capelas de Oliveira, J. Vaz Jr., On anomalous diffusion and the fractional generalized Langevin equation for a harmonic oscillator, J. Math. Phys., 50 (2009), 123518.
[13] C. Fox, The G and H functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc., 98 (1961), 395–429.
[14] D. Gomes, E. Capelas de Oliveira, The generating function for Eℓ n (ρ) polynomials, Algebras, Groups and Geometries, 14 (1997) 49–57.
[15] P. Inizan, Homogeneous fractional embeddings, J. Math. Phys., 49 (2008), 082901.
[16] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, “Theory and Applications of Fractional Differential Equations”, Mathematics Studies, Vol. 204, Edited by Jan van Mill, Elsevier, Amsterdam, 2006.
[17] V. Kiryakova, The special functions of fractional calculus as generalized fractional calculus operators of some basic functions, Comp. Math. Appl., 59 (2010), 1128–1141.
[18] G. Lauricella, Sulla funzione ipergeometrica a più variabili, Rend. Circ. Math. Palermo, 7 (1893), 111–158.
[19] E.K. Lenzi, L.R. Evangelista, M. K. Lenzi, H. V. Ribeiro and E. Capelas de Oliveira, Solutions of a Non-Markovian Diffusion Equation, Phys. Lett. A, 374 (2010) 4193–4198.
[20] C.F. Lorenzo, T.T. Hartley, Initialized fractional calculus, NASA/TP–2000–209943.
[21] F. Mainardi, “Fractional Calculus and Waves in Linear Viscoelasticity”, World Scientific Publishing Co., London, 2010.
[22] F. Mainardi, R. Gorenflo, On Mittag-Leffler-type functions in fractional evolution process, J. Comput. Appl. Math., 118 (2000), 283–299.
[23] F. Mainardi, G. Pagnini, Salvatore Pincherle: the pioneer of the Mellin-Barnes integrals, J. Comput. Appl. Math., 153 (2003), 331–342.
[24] F. Mainardi, G. Pagnini, R.K. Saxena, Fox H function in fractional diffusion, J. Comput. Appl. Math., 178 (2005), 321–331.
[25] A.M. Mathai, H.J. Haubold, “Special Functions for Applied Scientistic”, Springer, Heidelberg, 2008.
[26] A.M. Mathai, R.S. Saxena, H.J. Haubold, “The H−Function. Theory and Applications”, Springer, New York, 2010.
[27] G.S. Meijer, On the G function I-VIII, Nederl. Akad. Wettensch. Proc., 49, (1946), 227–237, 344–356, 457–469, 632–641, 765–772, 936–943, 1063–1072, 1165–1175. Traduzido para o Inglês: Indag. Math., 8, (1946), 124–134, 213– 225, 312–324, 391–400, 468–475, 595–602, 661–670 e 713–723.
[28] E.A. Notte Cuello, M.J. Menon, E. Capelas de Oliveira, Inverse problems in Hadron scattering and the Fox’s H−function (2010), Submetido à publicação.
[29] S. Pincherle, Sulle funzioni ipergeometriche generalizzate, Atti R. Accad. Lincei, Rend. Cl. Sci. Fis. Mat. Natur., 4 (1888), 694–700 e 792–799.
[30] I. Podlubny, “Fractional Differential Equations”, Mathematics in Science and Engineering, Vol.198, Academic Press, San Diego, 1999.
[31] T.R. Prabhakar, A singular integral equation with generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7–15.
[32] E.D. Rainville, “Special Function”, The Macmillan Company, New York, 1967.
[33] R.K. Saxena, In memorium of Charles Fox, Fract. Cal. Appl. Anal., 12 (2009), 337–344.
[34] I.N. Sneddon, “The Use of Integral Transforms”, McGraw-Hill, New York, 1972.
[35] Rui Yu, H. Zhang, New function of Mittag-Leffler type and its application in the fractional diffusion-wave equation, Chaos, Solitons & Fractals, 30 (2006), 946–955.
[36] N.N. Temme, “Special Function: An Introduction to the Classical Functions of Mathematical Physics”, Wiley, New York, 1996.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.