Feature Extraction of Structures in Sea Water Using Self-Organizing Maps and Electromagnetic Waves
DOI:
https://doi.org/10.5540/tema.2015.016.03.0261Keywords:
Neural networks, Self organizing maps, Electromagnetism, Underwater environmentAbstract
The use of Self-Organizing Map (SOM) algorithm for feature extraction and dimensionality reduction applied to underwater object detection with Low Frequency Electromagnetic Waves is presented. Computer simulation is used to generate a direct model for the study region, and a Self Organizing Map Algorithm is used to fit the data and return a similar model, with smaller dimensionality and same characteristics. Results show that virtual sensors are created by the SOM algorithm with consistent predictions, filling the resolution gap of the input data. These results are useful for fastening decision making algorithms by reducing the number of inputs to a group of significant data.References
L. S. Batista. Otimização computacional da técnica de elementos finitos para o modelamento geofísico eletromagnético. Master's thesis, Universidade Federal do Pará, Pará, 1991.
L. S. Batista. Espalhamento de Ondas Planas Eletromagnéticas Por Um Dique Vertical Com Cobertura . PhD thesis, Universidade Federal da Bahia, Bahia, 2001.
L. S. Batista and E. E. Sampaio. Scattering of electromagnetic plane waves by a buried vertical dike. Anais da Academia Brasileira de Ciências , 75(2):189207, 2003.
E. M. Golda, J. D. Walters, and G. F. GREEN. Applications of superconductivity to very shallow water mine sweeping. Naval Engineers Journal , 104(3):53-64, 1992.
P. K. Hansen. Magnetic motion tracker with transmitter placed on tracked object, Apr. 28 1998. US Patent 5,744,953.
S. Haykin. Neural Networks: A Comprehensive Foundation . International edition. Prentice Hall International, 1999.
E. C. Jordan and K. G. Balmain. Electromagnetic waves and radiating systems, volume 4. Prentice-Hall Englewood Clis, NJ, 1968.
S. P. Poplack, K. D. Paulsen, A. Hartov, P. M. Meaney, B. W. Pogue, T. D. Tosteson, M. R. Grove, S. K. Soho, and W. A. Wells. Electromagnetic breast imaging: Average tissue property values in women with negative clinical findings 1. Radiology , 231(2):571580, 2004.
R. Rojas. Neural networks: a systematic introduction . Springer, 1996.
A. Shaw, A. Al-Shamma'a, S. Wylie, and D. Toal. Experimental investigations of electromagnetic wave propagation in seawater. In Microwave Conference, 2006. 36th European , pages 572575. IEEE, 2006.
Downloads
Additional Files
- (Português (Brasil))
- (Português (Brasil))
- (Português (Brasil))
- (Português (Brasil))
- (Português (Brasil))
- (Português (Brasil))
- (Português (Brasil))
- (Português (Brasil))
- (Português (Brasil))
- (Português (Brasil))
- (Português (Brasil))
- (Português (Brasil))
- (Português (Brasil))
- (Português (Brasil))
- (Português (Brasil))
- (Português (Brasil))
- (Português (Brasil))
- (Português (Brasil))
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.