Recent Results on a Generalization of the Laplacian
DOI:
https://doi.org/10.5540/tema.2015.016.02.0131Abstract
In this paper we discuss recent results regarding a generalization of the Laplacian. To be more precise, fix a function$W(x_1,\ldots,x_d) = \sum_{k=1}^d W_k(x_k)$, where each $W_k: \bb R \to \bb R$ is a right continuous with left limits and strictly increasing function.Using $W$, we construct the generalized laplacian $\mc L_W = \sum_{i=1}^d \partial_{x_i}\partial_{W_i}$, where $\partial_{W_i}$ is a generalized differentialoperator induced by the function $W_i$.We present results on spectral properties of $\mc L_W$, Sobolev spaces induced by $\mc L_W$ ($W$-Sobolev spaces), generalized partial differential equations, generalized stochastic differential equations andstochastic homogenization.References
bibitem{dyn2} E. B. Dynkin, {em Markov processes}. Volume II.
Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences], 122. Springer-Verlag, Berlin,
bibitem{E} L. Evans, {em Partial differential equation}. AMS, 1998.
bibitem{f} A. Faggionato, {em Random walks and exclusion processs among random
conductances on random infinite clusters: Homogenization and hydrodynamic limit}.arXiv:0704.3020v3 .
bibitem{fjl} A. Faggionato, M. Jara, C. Landim, {em Hydrodynamic
behavior of one dimensional subdiffusive exclusion processes with
random conductances}. Probability Theory and Related Fields. v. 144, p. 633-667, 2009.
bibitem{fsv} J. Farfan, A. B. Simas, F. J. Valentim, {em Equilibrium fluctuations for exclusion processes with conductances in random environments}
, Stochastic Processes and their Applications, v. 120, p. 1535-1562, 2010.
bibitem{f1} W. Feller, {em On Second Order Differential Operators}. Annals of Mathematics, 61,n.1, 90-105, (1955).
bibitem{f2} W. Feller, {em Generalized second order differential operators and their lateral conditions}. Illinois J. Math. Vol. 1, Issue 4, 459-504, (1957).
%bibitem{feller} W. Feller. {em On second order differential operators.} Ann. Math., 55, 468-519. 1952.
bibitem{TC} T. Franco, C. Landim, { em Hydrodynamic limit of gradient exclusion processes with conductances}. Archive for Rational Mechanics and Analysis (Print), v. 195, p. 409-439, 2009.
bibitem{gj} P. Gonçalves, M. Jara. {em Scaling Limits for Gradient Systems in Random Environment.} J. Stat. Phys., 131, 691-716. 2008.
bibitem{kp} G. Kallianpur, V. Perez-Abreu, {em Stochastic Evolution equations Driven by Nuclear-space-Valued Martingale}. Applied Mathematics and Optimization. 17, 237-272. 1988.
bibitem{kl} C. Kipnis, C. Landim, {em Scaling limits of interacting
particle systems}. Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences], 320.
Springer-Verlag, Berlin, 1999.
bibitem{jl} M. Jara, C. Landim, {em
Quenched nonequilibrium central limit theorem for a tagged particle
in the exclusion process with bond disorder}. arXiv: math/0603653. Ann. Inst. H. Poincar'e,
Probab. Stat. 44, 341-361, (2008).
bibitem{jlt} Jara, M., Landim, C., Teixeira, A., {em Quenched scaling limits of trap models}. Annals of Probability, v. 39, p. 176-223, 2011.
bibitem{liggett} T.M. Liggett. emph{Interacting Particle Systems}. Springer-Verlag, New York. 1985.
bibitem{lo1} J.-U. L"obus, {em Generalized second order differential
operators}. Math. Nachr. {bf 152}, 229-245 (1991).
bibitem{m} P. Mandl, {em Analytical treatment of one-dimensional
{M}arkov processes}, Grundlehren der mathematischen
Wissenschaften, 151. Springer-Verlag, Berlin, 1968.
bibitem{papa} G. Papanicolaou, S.R.S. Varadhan, emph{Boundary value problems with rapidly oscillating random coefficients}, Seria Coll. Math. Soc. Janos Bolyai vol. 27, North-Holland (1979).
bibitem{pr} A. Piatnitski, E. Remy, {em Homogenization of Elliptic Difference Operators}, SIAM J. Math. Anal. Vol.33, pp. 53-83, (2001).
bibitem{SV} A.B. Simas, F.J. Valentim, {em $W$-Sobolev spaces}. Journal of Mathematical Analysis and Applications V. 382, 1, 214-230, 2011.
bibitem{SVII} A.B. Simas, F.J. Valentim,{em Homogenization of second-order generalized elliptic operators}, submitted for publication.
bibitem{spitzer} F. Spitzer. {em Interacting of Markov processes}. Adv. Math, 5, 246-290. 1970.
bibitem{v} F.J. Valentim, {em Hydrodynamic limit of a $d$-dimensional exclusion process with conductances.}.Ann. Inst. H. Poincar'e Probab. Statist. V. 48, 1, 188-211, 2012.
bibitem{z} E. Zeidler, {em Applied Functional Analysis. Applications
to Mathematical Physics.}. Applied Mathematical Sciences, 108. Springer-Verlag, New York, 1995.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.