Index, expressions and properties of interval-valued intuitionistic fuzzy implications

Authors

  • Benjamin Callejas Bedregal Universidade Federal do Rio Grande do Norte
  • Lidiane Visintin Universidade Federal de Pelotas
  • Reiser Hax Sander Reiser Universidade Federal de Pelotas

DOI:

https://doi.org/10.1590/S2179-84512013005000007

Abstract

The interval-valued intuitionistic fuzzy logic, an extension of fuzzy logic introduced by Atanassov, integrates the concepts of intuitionistic fuzzy logic and interval-valued fuzzy logic. The former, reflects the measure of vagueness and uncertainty in the diameter of an interval. The latter also considers the hesitation related to the dual construction.

This paper considers an expression to interval-valued intuitionistic fuzzy implications, which can be generated by interval-valued aggregation functions acting on mutual-dual pair of functions, an interval-valued implication and its corresponding coimplication. Then, we show under which conditions interval-valued intuitionistic fuzzy implications are diagonal preserving operators. We study not only properties of such operators which were extended to intuitionistic fuzzy logic, but also analyse properties truly intuitionistic. The canonical representation in the class of such operators and an interval version of an intuitionistic fuzzy index conclude this study.

Author Biographies

Benjamin Callejas Bedregal, Universidade Federal do Rio Grande do Norte

Depto Informática e Matemática Aplicada, Teoria da Computação

Lidiane Visintin, Universidade Federal de Pelotas

Centro de Desenvolvimento Tecnológico, Teoria da Computação

Reiser Hax Sander Reiser, Universidade Federal de Pelotas

Centro de Desenvolvimento Tecnológico, PPGC/UFPEL, Teoria da Computação

References

References

K. Atanassov and G. Gargov. Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 31(3):343–349, 1989.

K. T. Atanassov. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20:87–96, 1986.

M. Baczyn ́ski and B. Jayaram. QL-implications: Some properties and intersections. Fuzzy Sets

and Systems, 161(2):158–188, 2008.

B. Bedregal, G. Beliakov, H. Bustince, T. Calvo, R. Mesiar, and D. Paternain. A class of fuzzy

multisets with a fixed number of memberships. Information Sciences, 189(1):1–17, 2012.

B. Bedregal, G. Dimuro, R. Santiago, and R. Reiser. On interval fuzzy S-implications. Infor-

mation Science, 180(8):1373–1389, 2010.

P. Burillo and H. Bustince. Vague sets are intuitionistic fuzzy sets. Fuzzy Sets and Systems,

:403–405, 1996.

H. Bustince, E. Barrenechea, and V. Mohedano. Intuicionistic fuzzy implication operators - an expression and main properties. Uncertainty, Fuzziness and Knowledge-Based Systems, 12:387–406, 2004.

H. Bustince, E. Barrenechea, and M. Pagola. Generation of interval-valued fuzzy and Atanassov’s intuitionistic fuzzy connectives from fuzzy connectives and from kα operators: Law of conjuntions and disjuntions, amplitute. Int. J. of Int. Systems, 23:680–714, 2008.

H.Bustince,E.Barrenechea,andM.Pagola.Relationshipbetweenrestricteddissimilarityfunc- tions, restricted equivalence functions and normal en-functions: Image thresholding invariant. Pattern Recognition Letters, 29:525–536, 2008.

H.Bustince,P.Burillo,andF.Soria.Automorphism,negationsandimplicationoperators.Fuzzy Sets and Systems, 134(2):209–229, 2003.

C. Cornelis, G. Deschrijver, and E. E. Kerre. Advances and challenges in interval-valued fuzzy logic. Fuzzy Sets and Systems, 157(5):622–627, 2006.

G. Cornelis, G. Deschrijver, and E. E. Kerre. Implication in intuitionistic fuzzy and interval- valued fuzzy set theory: construction, classification, application. International Journal of Ap- proximate Reasoning, 35(1):55–95, 2004.

Visintin, Reiser and Bedregal

G. Deschrijver and E.E. Kerre. Implicators based on binary aggregation operators in interval-

valued fuzzy set theory. Fuzzy Sets and Systems, 153(2):229–248, 2005.

J. Fodor and M. Roubens. Fuzzy Preference Modelling and Multicriteria Decision Support.

Kluwer Academic Publisher, Dordrecht, 1994.

W.L.GauandD.J.Buehrer.Vaguesets.IEEETransactionsSystemsManCybernet,23(2):610– 614, 1993.

A. Jurio, M. Pagola, R. Mesiar, and H. Bustince. Image magnification using interval informa- tion. IEEE Transactions on Image Processing, 20(11), 2011.

L. Kitainik. Fuzzy Decision Procedures with Binary Relations: Towards a Unified Theory. Kluwer Academic Publishers, 1993.

L. Lin and Z. Xia. Intuitionistic fuzzy implication operators: Expressions and properties. Jour- nal of Applied Mathematics and Computing, 22(3):325–338, 2003.

A.Piskunov.Fuzzyimplicationinfuzzysystemscontrol.FuzzySetsandSystems,45(1):25–35, 1992.

R. H. S. Reiser and B. Bedregal. Obtaining representable coimplications from aggregation operators and dual operators. In Advances in Intelligent Systems Research - Proceedings of EUSFLAT 2011 and LFA 2011, pages 238–245, Aix-les-Bains, 2011. Atlantis Press. Amster- dam - Beijing - Paris: Atlantis Press.

R. H. S. Reiser and B. Bedregal. Obtaining representable interval-valued intuitionistic fuzzy implications from interval valued aggregation and dual operators. Fuzzy Sets and Systems, page 48, 2012. (submitted).

R.H.S.Reiser,B.Bedregal,andG.A.A.dosReis.Interval-valuedfuzzycoimplications.Jour- nal of Computer and System Sciences, 2012. Special Issue of WoLLIC 2010, 19th Workshop on Logic, Language, Information and Computation 2012 (accepted to journal).

R.H.N.Santiago,B.Bedregal,andB.M.Acióly.Formalaspectsofcorrectnessandoptimality in interval computations. Formal Aspects of Computing, 18(2):231–243, 2006.

Vicenç Torra. Element selection for intuitionistic fuzzy sets. IJKESDP, 2(2):160–168, 2010.

L. Visintin, R. H. Reiser, and B. Bedregal. Interval-valued intuitionistic fuzzy implications. In IEEE Conference Publications 2011: Workshop-School on Theoretical Computer Sciences (WEIT), pages 46–52, Pelotas, 2011.

L. Visintin, R. H. S. Reiser, and B. Bedregal. Interval-valued intuitionistic fuzzy implications: index, expressions and properties, 2010.

L. A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning - I. Information Sciences, 8(3):199–249, 1975.

Downloads

Published

2013-11-24

How to Cite

Bedregal, B. C., Visintin, L., & Reiser, R. H. S. (2013). Index, expressions and properties of interval-valued intuitionistic fuzzy implications. Trends in Computational and Applied Mathematics, 14(2), 193–208. https://doi.org/10.1590/S2179-84512013005000007

Issue

Section

Original Article