Oscilador Harmônico Quântico 1D Confinado e sua Energia Variacional obtida com Auxílio da Supersimetria
DOI:
https://doi.org/10.5540/tema.2005.06.01.0073Abstract
O estado fundamental do oscilador harmônico quântico unidimensional confinado é determinado através do Método Variacional aliado ao formalismo da Mecânica Quântica Supersimétrica. São apresentados resultados numéricos para vários valores do raio de confinamento. Observa-se que o autovalor de energia para o problema não confinado é recuperado quando este raio se torna muito grande.References
[1] V.C. Aguilera-Navarro, J.F. Gomes, A.H. Zimerman e E. Ley Koo, On the radius of convergence of Rayleigh-Schr¨odinger perturbative solutions for quantum oscillators in circular and spherical boxes, J. Math. Phys.: Math. Gen. A, 16 (1983), 2943-2952.
G.R.P. Borges e E. Drigo Filho, Supersimetria em Mecânica Quântica II: Oscilador Harmonico e Potencial Coulombiano, Rev. Bras. Ens. Fis., 21 (1999), 233-237.
G.R.P. Borges e E. Drigo Filho, Supersymmetry, Variational Method and the Lennard-Jones (12,6) Potential, Int. J. Mod. Phys. A, 16 (2001), 4401-4407.
F. Cooper, A. Kare e U.P. Sukatme, “Supersymmetric Quantum Mechanics”, World Scientific, Singapure, 2001.
E. Drigo Filho, Supersimetria em Mecânica Quântica, Rev. Bras. Ens. Fis., 19 (1997), 152-158.
E. Drigo Filho e R.M. Ricotta, Partial Algebraization of the Non-Polynomial Potential, Mod. Phys. Lett. A, 6 (1991), 2137-2142.
E. Drigo Filho e R.M. Ricotta, Supersymmetric Quantum Mechanics and Partially Solvable Potential, Phys. At. Nucl., 61 (1998), 1722-1725.
E. Drigo Filho e R.M. Ricotta, Supersymmetry, Variational Method and Hulthen Potential, Mod. Phys. Lett. A, 10 (1995), 1613-1618.
E. Drigo Filho e R.M. Ricotta, Morse Potential Energy Spectra through the Variational Method and Supersymmetry, Phys. Lett. A, 269 (2000), 269-276.
E. Drigo Filho e R.M. Ricotta, Supersymmetric Variational Energies of 3d Confined Potentials, Phys. Lett. A, 320 (2003), 95-102.
E. Drigo Filho e R.M. Ricotta, Supersymmetric Variational Energies for the Confined Coulomb System, Phys. Lett. A, 299 (2002), 137-143.
L.E. Gendenshtein e I.V. Kive, Supersymmetry in Quantum Mechanics, Sov. Phys. Usp., 28 (1985), 553-590.
R.W. Haymaker e A.R.P. Rau, Supersymmetry in Quantum-Mechanics, Am. J. Phys., 54 (1986), 928-936.
J.L. Marin e S.A. Cruz, Enclosed Quantum-Systems - Use of the Direct Variational Method, J. Phys. B: At. Mol. Opt. Phys., 24 (1991), 2899-2907.
S.Y. Ren, Quantum confinement in semiconductor Ge quantum dots, Solid State Comm., 102 (1997), 479-484.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.