Probabilidades Intervalares em Modelos Ocultos de Markov
DOI:
https://doi.org/10.5540/tema.2006.07.02.0361Abstract
Este trabalho apresenta um estudo sobre modelos ocultos de Markov onde as probabilidades consideradas são representadas por intervalos. Utilizando-se técnicas daMatemática Intervalar, foram desenvolvidos algoritmos intervalares para os problemas relacionados a esses modelos (Problema da Avaliação, Problema da Decodificação e Problema da Estimação de Parâmetros). Apresentam-se versões intervalares para os algoritmos Forward, Backward, Viterbi e Baum Welch. As implementa ções foram realizadas utilizando-se o toolbox Intlab para a Matemática Intervalar, no ambiente Matlab. Exemplos de aplicações são apresentados, mostrando-se a validade dos algoritmos desenvolvidos.References
[1] M.A. Campos, “Uma Extensão Intervalar para a Probabilidade Real”, Tese de Doutorado, Centro de Informática/UFPE, 1997.
M.A. Campos, Interval probabilities, application to discrete ramdom variables, em “Seleta do XXII CNMAC” (E.X.L. de Andrade et al., eds.), TEMA, Vol. 1, No. 2, pp. 333–344, SBMAC, 2000.
M.A. Campos, G.P. Dimuro, A.C. Costa, J.F.F. Araújo, A.M. Dias, Probabilidade Intervalar e Cadeias de Markov Intervalares no Maple, em “Seleta do XXIV CNMAC” (E.X.L. de Andrade et al., eds.), TEMA, Vol 3, n. 2, pp. 53–62, SBMAC, 2002.
A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society Series B, 39, No. 1 (1977), 1–38.
G.P. Dimuro, G.P., A.C.R.Costa, L.A.M. Palazzo, System of exchange values as tools for multi-agent organizations, JBCS, 11, No. 1 (2005), 31–50.
D. Goldberg, What every computer scientist should know about floating-point arithmetic, ACM Comp. Surveys, 23, No. 1 (1991), 5–48.
R.B. Keafort, V. Kreinovich (eds), “Applications of Interval Computations”, Kluwer, Boston, 1996.
I.O. Kozine, L.V. Utkin, Interval-valued finite Markov chains, Reliable Computing, 8, No. 2 (2002), 97–113.
U.W. Kulisch,W.L. Miranker, “Computer Arithmetic in Theory and Practice”, Academic Press, New York, 1981.
R.E. Moore, “Methods and Applications of Interval Analysis”, SIAM, Philadelphia, 1979.
L.R. Rabiner, B.H. Juang, An introduction to Hidden Markov models, IEEE ASSP Magazine, 3, No. 1 (1989), 4–16.
L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, Proceedings of the IEEE, 77 (1989), 257–286.
S.M. Rump, IntLab - Interval Laboratory, in “Developments in Reliable Computing” (T. Csendes, ed.), Kluwer, Dordrecht, 1999.
K. Weichselberger, Axiomatic foundations of the theory of interval-probability, in “Symposia Gaussiana”, pp. 47–64, Munich, 1993.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.