Comportamento Assintótico da Equação de Bernoulli-Euler com Dissipação Localizada e Efeito de Inércia Rotacional
DOI:
https://doi.org/10.5540/tema.2007.08.02.0309Abstract
Neste trabalho estudamos o comportamento assintótico da energia do problema de valor inicial e de fronteira associado com a equa cão de Bernoulli-Euler com efeito de inércia rotacional e um termo não linear dissipativo localizado em uma vizinhança da fronteira do domínio. O comportamento assintótico da energia no tempo é obtido com taxas de decaimento explícitas. Esse resultado é obtido utilizando-se o lema de Nakao, estimativas de energia via multiplicadores localizados e um argumento de “compacidade-unicidade”baseado no princípio de continuação única. O comportamento assintótico é válido para a equação de Bernoulli-Euler sem efeito de inércia rotacional ou para a equa cão de placas com efeito de inércia rotacional.References
[1] F. Alabau-Boussouira, Convexity andWeighted Integral Inequalities for Energy Decay Rates of Nonlinear Dissipative Hyperbolic Systems, Applied Mathematics and Optimization, 51, (2005), 67-91.
R.C. Charão, E. Bisognin, V. Bisognin, A.F. Pazoto, Asymptotic behavior of a Bernoulli-Euler type equation with nonlinear localized damping, Contributions to Nonlinear Analysis - Progress in nonlinear partial differential equations and their applications, 66, (2005), 67-91.
R. Gulliver, I. Lasiecka, W. Littman, R. Triggiani, The Case for Differential Geometry in the Control of Single and Coupled PDES: The Structural Acoustic Chamber, IMA Volumes in Mathematics and its Applications, 137, (2004), 73-182.
J.U. Kim, A unique continuation property of a beam equation with variable coefficients, in estimation and control of distributed parameter sustems, International Series of Numerical Mathematics, 100, (1991), 197-205.
J.L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev., 30,(1988), 1-68.
M. Nakao, Decay of solutions of the wave equation with a local nonlinear dissipation, Math. Ann., 305, (1996), 403-417.
M. Tucsnak, Semi-internal stabilization for a non-linear Bernoulli-Euler equation,Mathematical Methods in the Applied Sciences, 19, (1996), 897-907.
M. Tucsnak, Stabilization of Bernoulli-Euler beam by means of a pointwise feedback force, SIAM J. Control Optim., 39, (2000) 1160-1181.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.