Controle ótimo em agroecossistemas usando SDRE
DOI:
https://doi.org/10.5540/tema.2011.012.03.0221Abstract
O propósito deste trabalho é encontrar estratégias ótimas de controle de pragas no sistema biológico que apresenta comportamento não-linear. O controle, baseado no modelo de Lotka - Volterra de duas presas e um predador, é aplicado em um agroecossistema de plantação de soja. O objetivo desta estratégia de controle é manter a população de pragas abaixo de nível de danos econômicos. Este problema do controle ótimo é resolvido através do método das Equações de Riccati Dependentes do Estado (SDRE). Simulações numéricas para as estratégias do controle de pragas propostas, baseadas no modelo de Lotka-Volterra, foram realizadas para mostrar eficácia deste método.References
A.O. Angulo, G.T.H. Weigert, Rachiplusia nu (Guenée), estados inmaduros y biología (Lepidoptera, Noctuidae), Bol. Soc. Biol. de Concepcion, Concepcion, Chile, (1974), 22-117.
H.T. Banks, B.M. Lewis, H.T. Tran, Nonlinear feedback controllers and compensators: a State-Dependent Riccati Equation approach, Comput. Optim. Appl., 37 (2007), 177-218.
H.T. Banks, Hee-Dae Kwon, J.A. Toivanen, H.T. Tran, A State-Dependent Riccati Equation - based estimator approach for HIV feedback control, Optimal Control Applications and Methods, 27 (2006), 93-121.
R. Bellman, “Dynamic Programing”, Princeton, New Jersey, 1957.
S.R.B. Diehl, Soja: a importância do manejo de pragas, São Paulo: Correio Agrícola, 3 (1984), 660-665.
M.E. Gilpin, Spiral chaos in a Predador-Prey model, American Naturalist, 113 (1979), 306-308.
P.C. Mracek, J.R. Cloutier, Control designs for the nonlinear benchmark problem via the State-Dependent Riccati equation method, International Journal of robust and nonlinear control, 8 (1998), 401-433.
A. Molter, M. Rafikov, Controle ótimo para um sistema caótico de Lotka- Volterra, TEMA - Tendências em Matemática Aplicada e Computacional, 5, No. 2 (2004), 237-245.
O. Nakono et al., “Etimologio Económica”, Piracicaba: ESALQ, USP, 1981.
M. Rafikov, J.M. Balthazar, H.F. von Bremen, Mathematical modeling and control of population systems: applications in biological pest control, Applied Mathematics and Computation, 200 (2008), 557-573.
M. Rafikov, L. Bevilacqua, A.P.P. Wyse, Optimal control strategy of malaria vector using genetically modified mosquitoes, Journal of Theoretical Biology, 258 (2009), 418-425. 232 Molter e Rafikov
A.M. Shawky, A. W. Ordys, L. Petropoulakis, M.J. Grimble, Position control of flexible manipulator using non-linear H1 with State-Dependent Riccati Equation, em “IMechE, 221 Part I: J. Systems and Control Engineering”, pp. 475-486, 2007.
R.R. Vence, Predation and Resource Partitioning in one Predator - two Prey, Model Community, American Naturalist, 112 (1978), 797-813, An Evolution, 13 (1998), 325-329.
V. Volterra, “Leçons sur la Théorie Mathematique de la Lutte pour la Vie”, Gauthier-Villars, Paris, 1931.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.