Optimal Decay Rates for Kirchhoff Plates with Intermediate Damping
DOI:
https://doi.org/10.5540/tema.2020.021.02.261Keywords:
Plate equation, polynomial decay, optimal decay, frictional damping, Kelvin-Voigt type damping.Abstract
In this paper we study the asymptotic behavior of Kirchhoff plates with intermediate damping. The damping considered contemplates the frictional and the Kelvin-Voigt type dampings. We show that the semigroup those equations decays polynomially in time at least with the rate t^{-1/(2-2θ)}, where θ is a parameter in the interval [0,1[. Moreover, we prove that this decay rate is optimal.Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.