Optimal Decay Rates for Kirchhoff Plates with Intermediate Damping

Authors

  • J. C. V. Bravo Universidade Federal do Paraná
  • H. P. Oquendo Universidade Federal do Paraná
  • J. E. M. Rivera National Laboratory for Scientific Computation, Brazil.

DOI:

https://doi.org/10.5540/tema.2020.021.02.261

Keywords:

Plate equation, polynomial decay, optimal decay, frictional damping, Kelvin-Voigt type damping.

Abstract

In this paper we study the asymptotic behavior of Kirchhoff plates with intermediate damping. The damping considered contemplates the frictional and the Kelvin-Voigt type dampings. We show that the semigroup those equations decays polynomially in time at least with the rate t^{-1/(2-2θ)}, where θ is a parameter in the interval [0,1[. Moreover, we prove that this decay rate is optimal.

Author Biographies

J. C. V. Bravo, Universidade Federal do Paraná

Departamento de matematica

H. P. Oquendo, Universidade Federal do Paraná

Departamento de matematica

Downloads

Published

2020-07-22

How to Cite

Bravo, J. C. V., Oquendo, H. P., & Rivera, J. E. M. (2020). Optimal Decay Rates for Kirchhoff Plates with Intermediate Damping. Trends in Computational and Applied Mathematics, 21(2), 261. https://doi.org/10.5540/tema.2020.021.02.261

Issue

Section

Original Article