Sequências de Baixa Discrepância Aplicadas à Avaliação de Qualidade de Imagens Comprimidas

Authors

  • E.A. Lima
  • F. Madeiro

DOI:

https://doi.org/10.5540/tema.2009.010.02.0155

Abstract

Um dos desafios em codificação de imagens é a concepção de sistemáticas eficientes para a avaliação de qualidade de imagens reconstruídas. Este trabalho apresenta uma abordagem para a avaliação de qualidade de imagens baseada em sequências de baixa discrepância. Resultados obtidos para imagens 256 × 256 submetidas à quantização vetorial mostram que, com apenas 7% dos pixels, o erro médio quadrático calculado com a abordagem proposta difere em menos de 5% do valor exato desta métrica, calculado usando a totalidade dos pixels.

References

[1] H.M. Al-Otum, Evaluation of reconstruction quality in image vector quantisation using existing and new measures, IEE Proceedings – Vision, Image and Signal Processing, 145, No. 5 (1998), 349–356.

J.R. Deller Jr., J.G. Proakis, J.H.L. Hansen, “Discrete-time Processing of Speech Signals”, Macmillan Publishing Co., 1993.

M.P. Eckert, A.P. Bradley, Perceptual quality metrics applied to still image compression, Signal Processing, 70 (1998), 177–200.

A.M. Eskicioglu, P.S. Fischer, Image quality measures and their performance, IEEE Transactions on Communications, 43, No. 12 (1995), 2959–2965.

A. Gersho, R.M. Gray, “Vector Quantization and Signal Compression”, Kluwer Academic Publishers, Boston, MA, 1992.

R.M. Gray, Vector quantization, IEEE ASSP Magazine, (1984), 4–29.

J.H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multidimensional integrals, Numer. Math., (1960), 84–90.

N. Jayant, Signal Compression: technology targets and research directions, IEEE Journal on Selected Areas in Communications, 10, No. 5 (1992), 796–818.

L. Kuipers, H. Neiderreiter, “Uniform Distribution of Sequences”, Addison Wesley Publishing Company, Inc., New York, 1992.

F. Madeiro, J.M. Fechine, B.G. Aguiar Neto, M.S. Alencar, On the performance of objective quality measures for evaluating vector-quantized images, in “Proceedings of the XVII Brazilian Telecommunications Symposium (SBT’99)”, Vila Velha, ES, Brazil, pp. 616–621, 1999.

A. Shnayderman, A. Gusev, A.M. Eskicioglu, An SVD-Based grayscale image quality measure for local and global assessment, IEEE Transactions on Image Processing, 15, No. 2 (2006), 422–429.

K.S. Tan, P.P. Boyle, Applications of randomized low discrepancy sequences to the valuation of complex securities, Journal of Economic Dynamics and Control, (2000), 1747–1782.

Van der Corput, Zahlentheoretische abscha¨atzungen, Math. Ann., (1921), 53–79.

Z. Wang, A.C. Bovik, A universal image quality index, IEEE Signal Processing Letters, 9, No. 3 (2002), 81–84.

Published

2009-06-01

How to Cite

Lima, E., & Madeiro, F. (2009). Sequências de Baixa Discrepância Aplicadas à Avaliação de Qualidade de Imagens Comprimidas. Trends in Computational and Applied Mathematics, 10(2), 155–165. https://doi.org/10.5540/tema.2009.010.02.0155

Issue

Section

Original Article