A Convergence Indicator for Multi-Objective Optimisation Algorithms
DOI:
https://doi.org/10.5540/tema.2018.019.03.437Keywords:
Shannon Entropy, Performance Measure, Multi-Objective Optimisation Algorithms.Abstract
The algorithms of multi-objective optimisation had a relative growth in the last years.
Thereby, it's requires some way of comparing the results of these. In this sense, performance
measures play a key role. In general, it's considered some properties of these algorithms such as
capacity, convergence, diversity or convergence-diversity. There are some known measures such as generational distance (GD), inverted generational distance (IGD), hypervolume (HV),
Spread($\Delta$), Averaged Hausdorff distance ($\Delta_p$), R2-indicator, among others. In this
paper, we focuses on proposing a new indicator to measure convergence based on the traditional
formula for Shannon entropy. The main features about this measure are: 1) It does not require tho know the true Pareto set and 2) Medium computational cost when compared with Hypervolume.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.