Estudo das Trincas Retas com o Método dos Elementos de Contorno, a Função de Green Numérica e a Técnica da Dupla Reciprocidade
DOI:
https://doi.org/10.5540/tema.2019.020.01.115Keywords:
Método dos Elementos de Contorno, Função de Green Numérica, Dupla Reciprocidade.Abstract
Nos últimos anos, o Método dos Elementos de Contorno (MEC) tem sido aplicado com sucesso a problemas da mecânica da fratura linear elástica (MFLE) envolvendo os casos estático e dinâmico. Para resolver problemas com ações de domínio (por exemplo: forças gravitacionais, problemas transientes com velocidades e acelerações, etc.) via MEC, Nardini e Brebbia apresentaram em 1982 a técnica da Dupla Reciprocidade \cite{Brebbia:1992}, inicialmente com a intenção de resolver problemas transientes usando soluções fundamentais estáticas, mas que se revelou bastante adequado e eficaz na solução de problemas com ações de domínio. Com base no acima exposto, este trabalho apresenta estudos complementares \cite{Vera-Tudela:2003} utilizando a técnica da Função de Green numérica \cite{Telles:1995}, junto com a técnica da Dupla Reciprocidade.References
C. A. Brebbia, P. W. Partridge, and L. C. Wrobel, The Dual Reciprocity Boundary Element Method. Southampton: Computational Mechanics Publications,1992.
C. A. R. Vera-Tudela, Formulações Alternativas do MEC para Problemas Elastodinâmicos de Mecânica da Fratura com o uso da Função de Green Numérica. PhD thesis, COPPE, UFRJ, Rio de Janeiro, 2003.
J. C. F. Telles, G. S. Castor, and S. Guimarães, “A numerical green’s function approach for boundary elements applied to fracture mechanics,” International Journal for Numerical Methods in Engineering, no. 38, pp. 3259–3274, 1995.
C. A. Brebbia, J. C. F. Telles, and L. C. Wrobel, Boundary Elements Techniques: Theory and Applications in Engineering. London: Springer-Verlag, 1984.
J. C. F. Telles and S. Guimarães, “On the use of the numerical green’s function for sif computations with boundary elements,” in First International Conference on Boundary Element Techniques, (London), 1999.
J. C. F. Telles and S. Guimarães, “On the hyper-singular boundary element formulation for fracture mechanics applications,” Engineering Analysis with Boundary Elements, no. 13, pp. 353–363, 1994.
L. P. S. Barra, Aplicação do MEC à Mecânica da Fratura Elastodinâmica com Funções de Green Numéricas. PhD thesis, COPPE, UFRJ, Rio de Janeiro, RJ, 1996.
G. Karami and G. Kuhn, “Body-force linear elastic stress intensity factor calculation using boundary element method,” Computer and Structures, no. 49, pp. 107–115, 1993.
H. Tada, P. C. Paris, and G. R. Irwin, The Stress Analysis of Cracks Handbook. Hellertown: Del Research Corporation, 1983.
S. P. Thimoshenko and J. N. Goodier, Theory of Elasticity. New York: Mc Graw-Hill, 1970.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.