Analyzing the Relationship between Interval-valued D-Implications and Interval-valued QL-Implications

Authors

  • R.H.S. Reiser
  • B.R.C Bedregal
  • R.H.N Santiago
  • G.P. Dimuro

DOI:

https://doi.org/10.5540/tema.2010.011.01.0089

Abstract

The aim of this work is to analyze the relationship between interval QLimplications and their contrapositions named interval D-implications. In order to achieve this aim, the commutative classes relating to these concepts are studied. We also analyze under which conditions the main properties corresponding to punctual D-implications and QL-implications are still valid when an interval-based fuzzy approach, on the best interval representation, is considered.

References

[1] M. Baczynski, B. Jayaram, “Fuzzy implications”, Studies in Fuzziness and Soft Computing, Vol. 231, Springer, Berlin-Heidelberg, 2008.

B.C. Bedregal, On interval fuzzy negations, Fuzzy Sets and System, (2010), 2290–2313. (doi: 10.1016/j.fss.2010.04.018)

B.C. Bedregal, G.P. Dimuro, R.H.N. Santiago, R.H.S. Reiser, On interval fuzzy S-implications, Information Science, 180, No. 8 (2010), 1373–1389.

B.C. Bedregal, R.H.N. Santiago, R.H.S. Reiser, G.P. Dimuro, Properties of fuzzy implications obtained via the interval constructor, TEMA – Tend. Mat. Apl. Comput., 8, No. 1 (2007), 33–42.

B. Bedregal, A. Takahashi, The best interval representation of t-norms and automorphisms, Fuzzy Sets and Systems, 157, No. 24 (2006), 3220–3230.

H. Bustince, P. Burillo, F. Soria, Automorphism, negations and implication operators, Fuzzy Sets and Systems, 134 (2003), 209–229.

H. Bustince, E. Barrenechea, M. Pagola, Generation of interval-valued fuzzy and Atanassov’s intuitionistic fuzzy connectives from fuzzy connectives and from K operators: laws for conjunctions and disjunctions, amplitude, International Journal of Intelligent Systems, 23 (2008), 680–714.

R. Callejas-Bedregal, B.C. Bedregal, Intervals as a domain constructor, TEMA – Tend. Mat. Apl. Comput. 2 (2001), 43–52.

C. Cornelis., G. Deschrijver, E.E. Kerre, Advances and challenges in intervalvalued fuzzy logic, Fuzzy Sets and Systems, 157 (2006), 622–627.

G. Deschrijver, E.E. Kerre, On the Relationship Between some Extensions of Fuzzy Set Theory, Fuzzy Sets and Systems, 133, No. 2 (2003), 227–235.

G. Deschrijver, C. Cornelis, E.E. Kerre, On the Representation of Intuitionistic Fuzzy t-Norms and t-Conorms, IEEE Trans. on Fuzzy Systems, 12(1) (2004), 45–61.

G. Deschrijver, A representation of t-norms in interval-valued L-fuzzy set theory, Fuzzy Sets and Systems, 159 (2008), 1597–1618.

G. Deschrijver, Generalized arithmetic operators and their relationship to tnorms in interval-valued fuzzy set theory, Fuzzy Sets and Systems, 160 (2009), 3080–3102.

D. Dubois, H. Prade, Interval-valued fuzzy sets, possibility theory and imprecise probability, in “Proc. of the Intl. Conf. on Fuzzy Logic and Technology” pp. 314–319, Barcelona, 2005.

J.C. Fodor, On fuzzy implication operators, Fuzzy Sets and Systems, 42 (1991), 293–300.

B.V. Gasse, C. Cornelis, G. Deschrijver, E. Kerre, On the properties of a generalized class of t-norms in interval-valued fuzzy logics, New Math. and Natural Computation, 2 (2006), 29–42.

M. Gehrke, C. Walker , E. Walker, Some comments on interval valued fuzzy sets, International Journal of Intelligent Systems, 11 (1996), 751–759.

I. Grattan-Guiness, Fuzzy membership mapped onto interval and many-valued quantities, Z. Math. Logik. Grundladen Math., 22 (1975), 149–160.

T. Hickey, Q. Ju, M. Emdem, Interval arithmetic: from principles to implementation, Journal of the ACM 48, No. 5 (2001), 1038–1068.

K. Jahn, Intervall-wertige mengen, Math. Nach., 68 (1975), 115–132.

W.A. Lodwick, Preface, Reliable Computing, 10, No. 4 (2004), 247–248.

M. Paviˇci´c, N.D. Megill “Is quantum logic a logic?”, Handbook of Quantum Logic and Quantum Structures: Quantum Logic, (K. Engesser, D. M. Gabbay, D. Lehmann, eds.), Elsevier B.V. (2009), 23–47.

M. Mas, M. Monserrat, J. Torrens, QL-implications versus D-implications, Kybernetika, 42, No. 3 (2006), 351–366.

M. Mas, M. Monserrat, J. Torrens, Two types of implications derived from uninorms, Fuzzy Sets and Systems, 158, No. 3 (2007), 2612–2626.

M. Mas, M. Monserrat, E. Trillas, A survey on fuzzy implication functions, IEEE Transactions on Fuzzy Systems, 15, No. 6 (2007), 1107–1121.

R. Moore, “Methods and Applications of Interval Analysis”, SIAM, Philadelphia, 1979.

R. Moore, W. Lodwick, Interval analysis and fuzzy set theory, Fuzzy Sets and Systems, 135, No. 1 (2003), 5–9.

R.H.S. Reiser, G.P. Dimuro, B.C. Bedregal, R.H.N. Santiago, Interval-valued QL-implications, in “Logic, Language, Information” (D. Leivant, R. Queiroz, eds.), LNCS, Vol. 4576, pp. 307–321, Springer, Berlim, 2007.

R.H.S. Reiser, B.R.C. Bedregal, R.H.N. Santiago, G.P. Dimuro, Interval-valued D-implications, TEMA – Tend. Mat. Apl. Comput., 10, No. 1 (2009), 63–74.

D. Ruan, E. Kerre, Fuzzy implication operators and generalized fuzzy methods of cases, Fuzzy Sets and Systems, 54 (1993), 23–37.

R. Sambuc, “Fonctions φ-floues. Application l’aide au Diagnostic en Pathologie Thyroidienne”, Ph.D. thesis, Univ. Marseille, Marseille, 1975.

R.H.N. Santiago, B.C. Bedregal, B. Acióly, Formal aspects of correctness and optimality in interval computations, Formal Aspects of Computing, 18, No. 2 (2006), 231–243.

Y. Shi, B. Van Gasse, D. Ruan, E. E. Kerre, On the first place antitonicity in QL-implications, Fuzzy Sets and Systems, 159 (2008), 2998–3013.

A. Takahashi, B.C. Bedregal, T-normas, t-conormas, complementos e implicações intervalares, TEMA – Tend. Mat. Apl. Comput., 7, No. 1 (2006), 139–148.

E. Trillas, C. del Campo, S. Cubillo, When QM-operators are implication func- tions and conditionsl fuzzy relations, International Journal of Intelligent systems, 15(2000), 647–655.

E. Trillas, C. Alsina, E. Renedo, A. Pradera, On contra-symmetry and MPT conditionality in fuzzy logic, International Journal of Intelligent systems, 20(2005), 313–326.

I. Turksen, Fuzzy normal forms, Fuzzy Sets and Systems, 69 (1995), 319–346. [38] R. Yager, On some new classes of implication operators and their role in approximate reasoning, Information Sciences, 167 (2004), 193–216.

L.A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353.

L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning - I, Information Sciences, 6 (1975), 199–249.

Published

2010-06-01

How to Cite

Reiser, R., Bedregal, B., Santiago, R., & Dimuro, G. (2010). Analyzing the Relationship between Interval-valued D-Implications and Interval-valued QL-Implications. Trends in Computational and Applied Mathematics, 11(1), 89–100. https://doi.org/10.5540/tema.2010.011.01.0089

Issue

Section

Original Article