Aplicação da Metaheurística PSO na Identificação de Pontos Influentes por meio da Função de Sensibilidade de Casos
DOI:
https://doi.org/10.5540/tema.2011.011.01.0041Abstract
Neste trabalho é aplicada a meta heurística Otimização por Enxame de Partículas (Particle Swarm Optimization -PSO) na identificação de pontos influentes. Estes pontos exercem grande influência na determinação dos coeficientes do modelo de regressão. Foi utilizada, como função objetivo, a função de sensibilidade de casos gCook(ǫ) que tem comportamento multimodal. A eficiência da metodologia proposta foi testada em conjuntos de dados simulados. Os resultados obtidos mostram que esta metodologia apresenta soluções satisfatórias na identificação de pontos influentes.References
[1] R.A. Atkinson, Masking unmasked, Biometrika, 73 (1986), 533–541.
D. Belsley, E. Kuh, R. Welsch, “Regression Diagnostics”, John Wiley, New York, 1980.
E. Biazi, “Some Aspects of Influence Analysis and a New Approach”, Tese de doutorado, University of Warwick, 1996.
N. Billor, R. Loynes, Local influence: a new approach, Communs Statist., 22 (1993), 1595–1661.
R. Cook, Detection of influential observations in linear regression, Technometrics, 19 (1977), 15–18.
R. Cook, S. Weisberg, “Residuals and Influence in Regression”, Chapman and Hall, 1982.
R. Cook, Assessment of local influence, J.R.Statist.Assoc., 48 (1986), 133–169.
A. Costa, E. Biazi, J. Vítor, Aplicação da metaheurística PSO na identificação de pontos influentes por meio da função de sensibilidade de casos,Anais do CNMAC, 2 (2009), 586–591.
K.D. Crawford, R.L. Wainwright, Applying genetic algorithms to outlier detection, em “Proceedings of The Sixth International Conference on Genetic Algorithms”, Morgan Kaufmann Publishers, 546–550, 1986.
F. Critchley, Discussion of leave-k-out diagnostics for time series by A.G.Bruce and R.D.Martin, J. R. Statist. Soc., 51 (1989) 407–408.
F. Critchley, R.A. Atkinson, G. Lu, E. Biazi, Influence analysis basead on the case sensitivity function, Royal Statistical Society, 63 (2001), 307–323.
R. Eberhart, P. Simpson, R. Dobbins, “Computational Intelligence PC Tools”, MA Academic Press Professional, Boston, 1996.
R. Eberhart, Y. Shi, Comparing inertia weights and constriction factors in particle swarm optimization, em “Proceedings of Congress on Evolutionary Computation”, San Diego, 84–88, 2000.
F. Hampel, The influence curve and its role in robust estimation, J. Amer. Statist. Assoc., 69, (1974), 383–393.
J. Kennedy, R. Eberhart, Particle swarm optimization, em “Proc. of the IEEE. International Conference on Neural Networks”, Piscataway, NJ, 1942–1948, 1995.
D. Peña, A new statistic for influence in linear regression, Technometrics, 47, (2005), 1–12.
R. Poli, Analysis of the publications on the applications of particle swarm optimization, J.Artif. Evol. Ap , 1,(2008), 1–10.
P.J. Rousseeauw, A.M. Leroy, “Robust Regression and Outlier Detection”, New York, Wiley, 1987.
Y. Shi, R. Eberhart, A modified particle swarm optimizer, em “Proc. of the IEEE Congress on Evolutionary Computation”, Piscataway, NJ, 69–73, 1998.
J. Tolvi, Genetic algorithms for outlier detection and variable selection in linear regression models, Soft Computing, 8 (2004), 527–533.
D. Ye, Z. Chen, A new algorithm for high-dimensional outlier detection based on constrained particle swarm intelligence, Lecture Notes in Computer Science, 5009, (2008), 516–523.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.