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Binomial-exponential 2 distribution: Di�erent

estimation methods and weather applications

Abstract. In this paper, we have considered di�erent estimation methods of the

unknown parameters of a binomial-exponential 2 distribution. First, we brie�y

describe di�erent frequentist approaches such as the method of moments, modi�ed

moments, ordinary least-squares estimation, weighted least-squares estimation, per-

centile, maximum product of spacings, Cramer-von Mises type minimum distance,

Anderson-Darling and Right-tail Anderson-Darling, and compare them using ex-

tensive numerical simulations. We apply our proposed methodology to three real

data sets related to the total monthly rainfall during April, May and September at

Sao Carlos, Brazil.
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1. Introduction

The binomial-exponential 2 (BE2) distribution has been introduced by Bakouch et
al. (2014) as a distribution of a random sum of independent exponential random
variables when the sample size has a zero truncated binomial distribution. The
BE2 distribution has the probability density function (pdf)

f(x; θ, λ) =

(
1 +

(λx− 1) θ

2− θ

)
λe−λx, (1.1)

and the cumulative distribution function (cdf)

F (x; θ, λ) = 1−
(

1 +
λθx

2− θ

)
e−λx, (1.2)

where 0 ≤ θ ≤ 1 is the shape parameter and λ > 0 is the scale parameter. The BE2
distribution has an increasing and constant failure rate property.

Estimating the parameters of the BE2 distribution was discussed by Bakouch
et al. (2014) considering only the maximum likelihood estimation (MLE) method.
However it is of interest to compare the MLE method with other estimation pro-
cedures such as the method of moments, modi�ed moments, ordinary least-squares
estimation (OLSE), weighted least-squares estimation (WLSE), percentile (PCE),
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maximum product of spacings (MPS), Cramér-von-Mises type minimum distance
(CME), Anderson-Darling (ADE) and Right-tail Anderson-Darling (RADE).

We have several estimation methods available for the parametric distribution in
the literature, some of the estimation methods are well researched on theoretical
aspect. However, it is worth noting that in the case of small samples, there is often
evidence that the maximum likelihood method does not perform well. Therefore,
other estimating methods have recently been developed. The appeal of the estima-
tion methods vary from user to another and area of application. For instance, one
may prefer to use the moment estimator even when it does not have a closed form
expression. The objective of the article is to develop a guideline for choosing the
best estimation method for the BE2 distribution, which would be of interest to ap-
plied statisticians. Comparisons of estimation methods for other distributions have
been investigated in the literature, see e.g., Gupta and Kundu (2001), Kundu and
Raqab (2005), Alkasasbeh and Raqab (2009), Mazucheli et al. (2013), Teimouri et
al.(2013) and Dey et al.(2014).

The main goal of this paper is twofold: First is to show how di�erent frequentist
estimators of proposed distribution perform for di�erent sample sizes and second
is to show that the distribution outperforms at least as well as two-parameter dis-
tributions with respect to three real data sets.

Other motivation to use the BE2 distribution comes from the fact that stochastic
models that accommodate zero value has vast importance in practical applications,
for example in forecast models when we observe the monthly rainfall precipitation,
its common in dry periods the non occurrence of precipitation, therefore the occur-
rence of zero value can be observed in di�erent measures such as in the average,
maximum and minimum. Popular models such as Gamma, Weibull, Lognormal
and Generalized Exponential distribution not accommodate such characteristic. In
this paper we demonstrated that the BE2 distribution allows the occurrence of zero
value, becoming a simple alternative to be used in weather forecast models.

The paper is organized as follows. In Section 2, we present some notes and
properties for the model. In Section 3, we discuss the ten estimation methods
considered in this paper. In Section 4 a simulation study is presented in order to
identify the most e�cient estimators. In Section 5 we apply our proposed methodo-
logy to three real data sets related to the total monthly rainfall during April, May
and September at Sao Carlos, Brazil. Some �nal comments are presented in Section
6.

2. Notes and Properties

Note that the family of Lindley distributions is a subfamily of the BE2 family for θ =
2

2+λ . Also, for another motivation, recall that the pdf of the BE2 distribution can
be expressed as a two-component mixture of an exponential distribution (with scale
parameter λ) and a gamma distribution (with shape 2 and scale λ), i.e. f(x; p, λ) =
p λ2xe−λx + (1− p) λe−λx,where the mixing proportion p = θ

2−θ .
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Let X ∼ BE2(θ, λ), the raw moments of X about the origin is given by

E(Xr) =
r!

λr

(
1 +

rθ

2− θ

)
, (2.1)

and the survival function of X is given by

R(x; θ, λ) =

(
1 +

λθx

2− θ

)
e−λx.

Its important to point out, that a simple extension can be obtained for (1.1),
considering that x take value on 0, in these case,

fX(0; θ, λ) =
d

dx
FX(x; θ, λ)

∣∣∣
0

=

(
2− 2θ

2− θ

)
λ (2.2)

where fX(0; θ, λ) ≥ 0 for all 0 ≤ θ ≤ 1 and λ > 0. This result allows that the BE2
distribution become a simple alternative to be used in problems with occurrence of
zero value.

3. Methods of estimation

In this section, we describe the ten considered estimation methods to obtain the
estimators of the parameters θ and λ of the BE2 distribution.

3.1. Maximum Likelihood Estimation

The method of maximum likelihood is the most frequently used method of parameter
estimation (Casella and Berger, 2002). The method's success stems no doubt from
its many desirable properties including consistency, asymptotic e�ciency, normality,
invariance and simply its intuitive appeal. Let x1, · · · , xn be a random sample of
size n from (1.1), the likelihood function of the density (1.1) is given by

L(θ, λ;x) =

n∏
i=1

f(xi, θ, λ) = λn exp

(
−λ

n∑
i=1

xi

)
n∏
i=1

(
1 +

(λxi − 1)θ

2− θ

)
(3.1)

The log-likelihood function without constant terms is given by

`(θ, λ;x) = n log λ− λ
n∑
i=1

xi − n log(2− θ) +

n∑
i=1

log(2− 2θ + λθxi).

For ease of notation, we will denote the �rst partial derivatives of any function
f(x, y) by fx and fy. Now setting `θ = 0 and `λ = 0, we have

`θ =
n

λ
−

n∑
i=1

xi +

n∑
i=1

θxi
(2− 2θ + λθxi)

= 0 (3.2)
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and

`λ =
n

2− θ
+

n∑
i=1

λxi − 2

2− 2θ + λθxi
= 0. (3.3)

The maximum likelihood estimator θ̂ and λ̂ are obtained solving the non-linear
equations (3.2) and (3.3). Its important to point out that, non-linear optimization
algorithms such as the quasi-Newton algorithm, can be used to maximize directly
the likelihood function given in (3.1).

3.2. Moments Estimators

The method of moments is fairly simple procedure and has been widely used for
estimating parameters in statistical models. The moments estimators (MEs) of the
BE2 distribution can be obtained by equating the �rst two theoretical moments of
(1.1) with the sample moments 1

n

∑n
i=1 xi and

1
n

∑n
i=1 x

2
i respectively,

1

n

n∑
i=1

xi =
2

λ(2− θ)
and

1

n

n∑
i=1

x2
i =

2

λ2

(
1 +

2θ

2− θ

)
. (3.4)

After some algebraic manipulation the estimator θ̂ME for θ and λ̂ME for λ, can
be obtained by solving

θ̂ME =

√√√√4− 2

x̄2n

n∑
i=1

x2
i and λ̂ME =

2

x̄
(

2− θ̂ME

) . (3.5)

3.3. Method of Modi�ed Moments Estimators

A simple modi�cation can be made in the method of moments for estimating the
parameters of the BE2 distribution. Instead of equating the �rst two theoretical
moments consider that

E(X|θ, λ) =
2

λ(2− θ)
and V ar(X|θ, λ) =

2(2− θ2)

λ2(2− θ)2
. (3.6)

Note that, the population coe�cient of variation given by

CV (X|θ, λ) =

√
2(2− θ2)

2

is independent of the scale parameter λ. So, the estimator θ̂MME for θ and λ̂MME

for λ, can be easily obtained by solving

θ̂MME =

√
2− 2

( s
x̄

)2

, and λ̂MME =
2

x̄

(
2−

√
2− 2

(
s
x̄

)2) (3.7)

where x̄ and s are the sample mean and sample standard deviation respectively.
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3.4. Least-Square Estimators

The ordinary least square and the weighted least square are well known methods
used for estimating the unknown parameters. Let F (X) be the distribution func-
tion of the random variables {X1, X2, · · · , Xn} and X(1) < X(2) < · · · < X(n) be
ordered random variables. The least square estimators, denoted by θ̂LSE and λ̂LSE
is obtained by minimizing

S (θ, λ) =

n∑
i=1

[
F (xi:n | θ, λ)− i

n+ 1

]2

with respect to θ and λ, where F (·) is given by (1.2). Equivalently, they can be
obtained by solving:

n∑
i=1

[
F (xi:n | θ, λ)− i

n+ 1

]
η1 (xi:n | θ, λ) = 0,

n∑
i=1

[
F (xi:n | θ, λ)− i

n+ 1

]
η2 (xi:n | θ, λ) = 0.

The WLSEs, θ̂WLSE and λ̂WLSE , can be obtained by minimizing

W (θ, λ) =

n∑
i=1

(n+ 1)
2

(n+ 2)

i (n− i+ 1)

[
F (xi:n | θ, λ)− i

n+ 1

]2

.

These estimators can also be obtained by solving:

n∑
i=1

(n+ 1)
2

(n+ 2)

i (n− i+ 1)

[
F (xi:n | θ, λ)− i

n+ 1

]
η1 (xi:n | θ, λ) = 0,

n∑
i=1

(n+ 1)
2

(n+ 2)

i (n− i+ 1)

[
F (xi:n | θ, λ)− i

n+ 1

]
η2 (xi:n | θ, λ) = 0,

where

η1 (xi:n | θ, λ) =
−2λxi:ne

−λxi:n

(2− θ)2
, (3.8)

and

η2 (xi:n | θ, λ) = xi:ne
−λxi:n(1 +

λθxi:n
2− θ

)− θxi:ne
−λxi:n

2− θ
. (3.9)

3.5. Percentile Estimators

The percentile estimators is a method of statistical inference originally suggested
by Kao (1958, 1959). This method is commonly used to estimate the unknown
parameters from the distribution functions that has a closed form for the quan-
tile function. The percentile estimates (PCE�s) are obtained by minimizing, with
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respect unknown parameters, the Euclidean distance between the ordered sample
points and ordered theoretical points, computed throughout the quantile function.
Since,

F (x, θ, λ) = 1−
(

1 +
λθx

2− θ

)
e−λx

therefore, the quantile function is given by

xp =
1

λ
ln

2− θ + λθxp
(2− θ) (1− p)

.

Let X(j) be the jth order statistic, i.e., X(1) < X(2) < · · · < X(n). If pj denotes
some estimators of F (x(j); θ, λ), then the estimators of θ and λ can be obtained by

minimizing
∑n
j=1

(
x(j) − 1

λ ln
2−θ+λθxp

(2−θ)(1−pj)

)2

with respect to θ and λ. The percentile

estimators θ̂PCE and λ̂PCE can be obtained by solving the following nonlinear
equations

n∑
j=1

[
xj −

1

λ
log

(
(2− θ + λθxp
(2− θ)(1− pj)

)](
xp

(2− θ + λθxp)(2− θ))

)
= 0,

n∑
j=1

[
xj −

1

λ
log

(
(2− θ + λθxp
(2− θ)(1− pj)

)][
1

λ2
log

(2− θ + λθxp)

(2− θ)(1− pj)
− 1

λ

θxp
(2− θ + λθxp)

]
= 0,

respectively. In this paper, we consider as estimator pj = j
n+1 . However di�erent

estimators can be used instead, see for example Mann, et. al. (1974).

3.6. Method of Maximum Product of Spacings

The maximum product spacing (MPS) method has been introduced by Cheng and
Amin (1979, 1983) as an alternative to MLE for the estimation of the unknown
parameters parameters of continuous univariate distributions. The MPS method
was also derived independently by Ranneby (1984) as an approximation to the
Kullback-Leibler measure of information. To motivate our choice, Cheng and Amin
(1983) proved that this method is as e�cient as the MLE estimators and consistent
under more general conditions.

Using the same notations in subsection 3.4., de�ne the uniform spacings of a
random sample from the BE2 distribution as:

Di(θ, λ) = F (xi:n | θ, λ)− F (xi−1:n | θ, λ) , i = 1, 2, . . . , n,

where F (x0:n | θ, λ) = 0 and F (xn+1:n | θ, λ) = 1. Clearly
∑n+1
i=1 Di(θ, λ) = 1.

The maximum product of spacings estimators θ̂MPS and λ̂MPS , of the parame-
ters θ and λ are obtained by maximizing, with respect to θ and λ, the geometric
mean of the spacings:

G (θ, λ) =

[
n+1∏
i=1

Di(θ, λ)

] 1
n+1

, (3.10)
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or, equivalently, by maximizing the function

H (θ, λ) =
1

n+ 1

n+1∑
i=1

logDi(θ, λ). (3.11)

The estimators θ̂MPS and λ̂MPS of the parameters θ and λ can be obtained by
solving the nonlinear equations

∂H (θ, λ)

∂θ
=

1

n+ 1

n+1∑
i=1

1

Di(θ, λ)
[η1(xi:n|θ, λ)− η1(xi−1:n|θ, λ)] = 0,(3.12)

∂

∂λ
H (θ, λ) =

1

n+ 1

n+1∑
i=1

1

Di(θ, λ)
[η2(xi:n|θ, λ)− η2(xi−1:n|θ, λ)] = 0,(3.13)

where η1 (· | θ, λ) and η2 (· | θ, λ) are given by (9) and (10), respectively.

3.7. Methods of Minimum Distances

In this subsection we present three minimum distance estimators (also called ma-
ximum goodness-of-�t estimators) for λ and θ. This class of estimators are based
on minimizing any empirical distribution function (EDF) statistics with respect to
the unknown parameters (see, D'Agostino and Stephens, 1986; Luceño, 2006).

3.7.1. Method of Cramér-von-Mises

To motivate our choice of Cramér-von-Mises type minimum distance estimators,
MacDonald (1971) provided empirical evidence that the bias of the estimator is
smaller than the other minimum distance estimators. Thus, The Cramér-von Mises
estimators θ̂CME and λ̂CME of the parameters θ and λ are obtained by minimizing,
with respect to θ and λ, the function:

C(θ, λ) =
1

12n
+

n∑
i=1

(
F (xi:n | θ, λ)− 2i− 1

2n

)2

. (3.14)

These estimators can also be obtained by solving the non-linear equations:

n∑
i=1

(
F (xi:n | θ, λ)− 2i− 1

2n

)
η1 (xi:n | θ, λ) = 0,

n∑
i=1

(
F (xi:n | θ, λ)− 2i− 1

2n

)
η2 (xi:n | θ, λ) = 0,

where η1 (· | θ, λ) and η2 (· | θ, λ) are given by (9) and (10), respectively.
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3.7.2. Methods of Anderson-Darling and Right-tail Anderson-Darling

The Anderson-Darling estimator is another type of minimum distance estimator and
is based on an Anderson-Darling statistic (Anderson & Darling, 1952, 1954). Luceño
(2006) provides some motivation about using such statistic and also introduces a
modi�cation, namely, Right-tail Anderson-Darling statistics. The Anderson-Darling
estimators θ̂ADE and λ̂ADE of the parameters θ and λ are obtained by minimizing,
with respect to θ and λ, the function:

A(θ, λ) = −n− 1

n

n∑
i=1

(2i− 1)
{

logF (xi:n | θ, λ) + logF (xn+1−i:n | θ, λ)
}
. (3.15)

These estimators can also be obtained by solving the non-linear equations:

n∑
i=1

(2i− 1)

[
η1 (xi:n | θ, λ)

F (xi:n | θ, λ)
−
η1

(
x

n+1−i:n
| θ, λ

)
F (xn+1−i:n | θ, λ)

]
= 0,

n∑
i=1

(2i− 1)

[
η2 (xi:n | θ, λ)

F (xi:n | θ, λ)
−
η2

(
x

n+1−i:n
| θ, λ

)
F (xn+1−i:n | θ, λ)

]
= 0,

where η1 (· | θ, λ) and η2 (· | θ, λ) are given by (9) and (10) , respectively.
The Right-tail Anderson-Darling estimators θ̂RTADE and λ̂RTADE of the para-

meters θ and λ are obtained by minimizing, with respect to θ and λ, the function:

R(θ, λ) =
n

2
− 2

n∑
i=1

F (xi:n | θ, λ)− 1

n

n∑
i=1

(2i− 1) logF (xn+1−i:n | θ, λ) . (3.16)

These estimators can also be obtained by solving the non-linear equations:

−2

n∑
i=1

η1 (xi:n | θ, λ)

F (xi:n | θ, λ)
+

1

n

n∑
i=1

(2i− 1)
η1

(
x

n+1−i:n
| θ, λ

)
F (xn+1−i:n | θ, λ)

= 0,

−2

n∑
i=1

η2 (xi:n | θ, λ)

F (xi:n | λ, σ)
+

1

n

n∑
i=1

(2i− 1)
η2

(
xn+1−i:n | θ, λ

)
F (xn+1−i:n | θ, λ)

= 0,

where η1 (· | θ, λ) and η2 (· | θ, λ) are given by (9) and (10), respectively.

4. Simulation Study

In this section we develop a simulation study via Monte Carlo methods. The main
goal of these simulations is to compare the e�ciency of the di�erent estimation
methods for the parameters of the BE2 distribution. The following procedure was
adopted:

1. Set the sample size n and the parameter values α.
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2. Generate values of the BE2(θ, λ) with size n.

3. Using the values obtained in step 2, calculate θ̂ and λ̂ via MLE, ME, MME,
LSE, WLSE, PCE, MPS, CME, ADE, RTADE.

4. Repeat the steps 2 and 3 N times.

5. Using α̂ and α, compute the mean relative estimates (MRE)
∑N
i=1

α̂i/α

N
and

the mean square errors (MSE)
∑N
i=1

(α̂i − αi)2

N
.

It is expected that for this approach the MRE's are closer to one with smaller
MSE's. The results were computed using the software R (R Core Development
Team). The seed used to generate the random values was 2015. The chosen values to
perform this procedure were α = (1, 0.8), N = 10000 and n = (15, 20, 25, · · · , 130).

Figure 1 shows the MRE's, MSE's from the estimates of λ and θ obtained using
di�erent estimation methods for N simulated samples and considering di�erent
values of n. The horizontal lines in Fig. 1 corresponds to MRE's and MSE's being
respectively one and zero. We have presented results only for λ = 1 and θ = 0.8 for
reasons of space. But the following results were similar for other choices for λ and
θ.

From these �gure, we observe that the MSE of all estimators of the parameters
tend to zero for large n and also, as expected, the values of MRE's tend to 1, i.e.
the estimates are asymptotically unbiased for the parameters.

In the case of λ the CME, ADE and RTADE behave better than MLE for small
sample sizes in terms of MRE's and MSE's. In the case of θ, the CME and RTADE
indicate a good performance, however the MLE allow to get better estimates of θ̂
than the other methods for all sample sizes. The Percentile estimator has largest
MSE's among all the considered estimators even for a large sample size.

Comparing all these we observe that, for small sample sizes, the CME and
the RTADE estimators are highly competitive methods compared to the maximum
likelihood method for estimating the parameters of the BE2 distribution.

5. Applications

5.1. Data sets

Located in southeastern Brazil, Sao Carlos is a city of 238, 958 inhabitants. The
city has an active industrial pro�le and high agricultural importance. Therefore,
the study of the behaviour of dry and wet periods has proved of high strategic and
economic importance for the regional development. From Figure 2 we observe that
the city has rainy periods from October to March, and from June to August exhibit
more dry periods.

Consequently predict the behaviour of the transition periods in rainy sessions
(April, May and September) enables that agriculturists be prepared against di�erent
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Figura 1: MRE's, MSE's related from the estimates of λ and θ for N simulated
samples, considering di�erent values of n obtained using the following estimation
method 0-MLE, 1-ME, 2-MME, 3-LSE, 4-WLSE, 5-PCE, 6-MPS, 7-CME, 8-ADE,
9-RTADE.

problems (see Barbieri, 2007, for more details), such as, water scarcity. In this
paper, we consider three real data sets related to the total monthly rainfall during
April, May and September at Sao Carlos. The data sets (see the Appendix for more
details) was obtained from the Department of Water Resources and Power agency
manager of water resources of the State of Sao Paulo including a period from 1960
to 2014.

5.2. Discrimination Criterion Methods

We �rstly consider di�erent discrimination criterion methods based on log-likelihood
function evaluated at the MLEs. Let k be the number of parameters to be �tted and
α̂ the MLE's of α, the discrimination criterion methods are respectively: Akaike
information criterion (AIC) computed through AIC = −2l(α̂;x) + 2k, Corrected
Akaike information criterion AICC = AIC + 2 k (k+1)

(n−k−1) , Hannan-Quinn information
criterion HQIC = −2 l(α̂;x) + 2 k log (log(n)) and the consistent Akaike informa-
tion criterion CAIC = −2 l(α̂;x)+k (log(n) + 1). The best model is the one which
provides the minimum values of those criteria.
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Figura 2: Average of the total monthly rainfall from January to December at Sao
Carlos, Brazil.

For sake of comparison, to analyze the rainfall data, the results obtained from
the BE2 distribution will be compared with the, Weibull, Gamma, Lognormal,
Gumbel (Lawless, 2002) and Generalized Exponential (Gupta & Kundu, 1999, 2001)
distributions and nonparametric survival function.

5.3. Results

Firstly, the data set related to May and September has the occurrence of zero
value. Therefore to compute the MLE's of the Gamma, Weibull, Lognormal and
Generalized Exponential distribution we approximate such values to 0.1. In the
case of BE2 and Gumbel distributions we use the original values. Table 1 presents
the results from AIC, AICC, HQIC and CAIC criteria, for di�erent probability
distributions. In the Figure 3, we have the survival function adjusted by di�erent
distributions and non-parametric survival estimator.

Comparing the empirical survival function with the adjusted distributions it can
be observed a better �t for the BE2 distribution among the chosen models. This
result is con�rmed from AIC, AICC, HQIC and CAIC criteria as the BE2 distri-
bution has the minimum values. Table 2 displays the MLE's and 95% con�dence
intervals for θ and λ of the BE2 distribution.

The discrimination criterion methods select the BE2 distribution as the best
model among the compared models. The quantile-quantile (Q-Q) plot is a graphical
technique that also provide an assessment of goodness of �t. If the data set come
from the proposed distribution the points should fall approximately along the 45-
degree reference line. In the Figure 4, we have the Q-Q plot from the proposed data
set.
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Figura 3: Survival function adjusted by di�erent distributions and a non-parametric
method considering the data sets related to the total monthly rainfall during April,
May and September at Sao Carlos

Tabela 1: Results of the AIC, AICC, HQIC and CAIC criteria for di�erent proba-
bility distributions considering the data sets related to the total monthly rainfall
during April, May and September at Sao Carlos.

Month Test BE2 Weibull Gamma Lognormal Gumbel GE

April

AIC 566.422 566.814 570.371 595.503 568.860 571.125
AICC 566.662 567.054 570.611 595.743 569.100 571.365
HQIC 567.937 568.329 571.886 597.018 570.375 572.640
CAIC 572.362 572.755 576.312 601.443 574.801 577.066

May

AIC 543.378 545.769 544.980 580.391 553.281 544.751
AICC 543.618 546.009 545.220 580.631 553.521 544.991
HQIC 544.893 547.284 546.495 581.906 554.796 546.266
CAIC 549.319 551.710 550.921 586.332 559.222 550.692

September

AIC 591.569 592.515 591.911 625.321 604.370 591.780
AICC 591.795 592.741 592.137 625.547 604.596 592.006
HQIC 593.139 594.085 593.481 626.891 605.940 593.350
CAIC 597.620 598.566 597.962 631.372 610.421 597.831

From the Figure 4, we observe that the points are approximately along the
reference line. Therefore, through the proposed methodology the data related to
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Tabela 2: MLE, 95% con�dence intervals for θ and λ considering the data sets
related to the total monthly rainfall during April, May and September at Sao Carlos.

Month α MLE CI95%(α)

April
θ 0.9100 (0.6436;0.9826)
λ 0.0227 (0.0180;0.0286)

May
θ 0.7097 (0.3561;0.9153)
λ 0.0254 (0.0186;0.0346)

September
θ 0.6375 (0.1766;0.9351)
λ 0.0208 (0.0139;0.0313)
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Figura 4: Q-Q plot considering the data sets related to the total monthly rainfall
during April, May and September at Sao Carlos.

the total monthly rainfall during April, May and September at Sao Carlos can be
described by the Binomial-exponential 2 distribution.

6. Conclusions

In this paper, we derived and compared, via intensive simulation experiments, the
estimation of the parameters of the Binomial-exponential 2 distribution using ten
estimation methods. The simulations show that, for small sample sizes, the Cramer-
von Mises type minimum distance estimators and the Right-tail Anderson-Darling
estimators are highly competitive methods compared to the maximum likelihood
method for estimating the parameters of the BE2 distribution. We also apply our
proposed methodology in three real data sets related to the total monthly rainfall
during April, May and September at Sao Carlos, Brazil, demonstrating that the
BE2 distribution is a simple alternative to be used in weather forecast models.
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7. Appendix

• April: 59.00, 102.20, 17.30, 23.00, 50.60, 27.00, 203.00, 40.90, 53.00, 177.40,
94.60, 129.40, 76.00, 93.20, 22.80, 98.80, 77.70, 204.20, 16.90, 55.10, 103.90,
34.90, 39.70, 137.70, 104.20, 117.60, 17.10, 120.80, 164.90, 50.20, 172.80, 58.50,
112.40, 24.50, 32.80, 64.00, 72.10, 139.30, 0.50, 70.90, 0.80, 82.70, 108.60,
32.30, 13.60, 25.70, 135.80, 136.80, 89.70, 139.20, 102.80, 97.30, 60.60.

• May: 63.40, 41.70, 0.00, 0.00, 47.30, 31.50, 172.80, 93.50, 0.00, 60.10, 23.00,
90.10, 50.50, 67.50, 4.70, 7.10, 93.50, 0.20, 82.20, 112.90, 7.10, 35.50, 81.50,
202.60, 56.10, 19.20, 69.10, 133.00, 111.40, 25.90, 33.50, 46.80, 54.60, 43.00,
46.50, 83.60, 73.50, 18.00, 16.30, 70.00, 56.30, 70.90, 183.70, 78.20, 6.20, 86.00,
66.10, 72.80, 20.90, 17.20, 113.90, 169.60, 22.10.

• September: 26.40, 12.50, 1.00, 44.80, 0.00, 74.20, 179.50, 76.70, 269.50, 49.00,
306.80, 102.70, 73.50, 35.20, 72.70, 28.80, 49.30, 132.00, 151.50, 39.70, 136.20,
112.00, 17.70, 11.60, 225.20, 102.60, 27.10, 17.50, 6.70, 82.20, 40.70, 54.60,
115.50, 89.50, 0.00, 17.00, 127.40, 41.70, 43.10, 84.70, 102.50, 120.90, 80.10,
18.10, 5.30, 59.50, 26.80, 0.00, 34.30, 101.10, 60.30, 31.50, 60.40, 45.30, 49.50,
70.44.
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