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ABSTRACT. The computation of reliability metrics, that are reliability function, mean time to failure,
hazard rate function, involves real numbers. Therefore, numerical problems are generated due to the lim-
itation of representing and operating with real numbers in computers. This paper is focused on computing
intervals that bound numeric errors introduced during computation process of reliability metrics in digital
machines for Exponential, Weibull and Normal failure distributions. Interval functions were proposed for
controlling numeric errors in the computation of reliability metrics values of complex systems, based on
interval mathematics and high accuracy arithmetic. The interval functions calculate interval enclosures, us-
ing Intlab toolbox, for real values of reliability metrics and the SHARPE software was used to validate the
results. Analysis of the numerical results obtained with the proposed functions showed that the intervals
really enclose the real numbers calculated by the SHARPE software, indicating that these functions, in fact,
are an alternative for auto-validating representation of these reliability values of complex systems.

Keywords: reliability, interval mathematics, high accuracy arithmetic, interval enclosures.

1 INTRODUCTION

Reliability is defined as the probability that a system (component) will function over some period

of time [5]. Usually, it is used for model the system reliability the probability functions: reli-
ability function and hazard rate function. In addition, a common parameter that is usefull in
reliability analysis is the mean time to failure [5, 13, 23]. Throughout this paper, we call these

three ways to quantify reliability aspects as reliability metrics.

As reliability metrics are real numbers, the computation of these values can generate numeric
problems caused primarily by the limitation in handling real numbers in a digital machine [6].
The calcutation process introduces round-off and truncation errors [8]. In order to control these

types of numeric errors, this paper presents interval functions, which yield interval enclosures.
These intervals encapsulate guarantee that the real values of reliability metrics, for sure, will be
within the computed interval enclosures.
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144 INTERVAL ENCLOSURES FOR RELIABILITY METRICS

Let X be the set of all the real numbers x that satisfy X ≤ x ≤ X . Then, X is an interval
[19, 20, 21, 26] with lower and upper bounds equal to X and X , respectively. Thus, X can be
give by: X = [X, X ] = {x ∈ |X ≤ x ≤ X}.
We denote the set of the closed real intervals by IIR. Interval functions use arithmetic operations
[19, 20, 21] defined on IIR. These interval functions here defined receive as argument a real
number t ≥ 0, which represents the observation time of the system. Therefore, such functions
are given by F : R→ IIR.

The interval enclosures in this paper have high accuracy [12], i.e., they have the smallest possible
width that can be represented in digital machines. High accuracy intervals have lower and upper
bounds that belong to the floating-point system of the digital machine [3].

Let be the floating-point system F ⊆ R. Since X = [X , X ] are a high accuracy interval and
encloses the real number x , then (i) X ∈ F, (ii) X ∈ F, (iii) X ≤ x ≤ X . These conditions define
the called high accuracy intervals [12]. To represent these type of intervals and the arithmetic
operations between them in a floating-point system, it is mandatory the use of the directional
rounding operators, � (upward direction) and ∇ (downward direction). Each of these directional
operators, when applied to a real number x , yield a number in the floating-point system closer to
x , such that �x ∈ F, �x ≥ x and ∇x ∈ F, ∇x ≤ x .

The probabilistic modeling of reliability is based on a nonnegative continuous random variable
T , which represents the time to failure of a given system. In this paper, the computed interval
encapsulates real values of reliability metrics real values of systems with Exponential, Weibull
and Normal time to failure distribution. Analysis were performed using isolated components
and complex systems [5] with components logically connected in series and in parallel [13, 23].
These procedures use the Simpson Interval Method [3] to yield interval enclosures for probabil-
ity values of continuous random variables [1]. At the end of this work, intervals obtained by the
proposed interval functions were compared with the numerical results of the Symbolic Hierar-
chical Automated Reliability and Performance Evaluator software (SHARPE) [23]. According
to Hirel et al. [9] the SHARPE software is used in the reliability field and performance analysis,
being used by universities and companies.

The works of [27, 28, 29, 30] address the same thematic of the current one. These studies present
reliability interval analysis aimed to determine failure probabilities with interval parameters. In
[4] it is outlined a focus in providing intervals to reliability based on Bayesian analysis. The
work of [16] presents interval enclosures for reliability function values of systems with Expo-
nential failure distribution. This paper has a new approach that is focused on computing intervals
that bound numeric errors introduced during computation process of reliability metrics in digital
machines for Exponential, Weibull and Normal failure distributions.

All the computation procedures here presented were performed in the following computational
platform:

• Processor: Celeron(R) Dual-Core CPU T3000 1.80 GHz;

• Main Memory: 2.00 GB;

• Operational System: Windows 7 Starter.

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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In this paper, the interval computation is performed over the set of IEEE 754 binary64 floating-
point numbers [10], which is suitable with the Matlab [15] toolbox Intlab [22]. There are others
approaches to implement interval computing, as it is outlined in [7, 11]. We chose IntLab since
this toolbox is widely used for users from more than 50 countries. Moreover, Intlab produces
reliable results which is proved to be true under any circumstances, in particular covering rouding
errors and all error terms [22].

2 RELIABILITY MODELING AND INTERVAL ENCLOSURES

In this section, we define interval functions and their implementations using the IntLab. These
interval functions result in interval enclosures for reliability metrics of a system (reliability func-
tion, mean time to failure and hazard rate function). Throughout this section, it is considered
that the continuous random variable T takes only non-negative values. In this work, calculations
are performed for T with Exponential, Weibull and Normal distributions. It is also assumed that
this variable can be described by its probability density function fT and cumulative distribution
function FT . Also, it is assumed that the systems addressed in this paper are not repairable [13].
So, it is not considered repairs and maintenance of any analyzed system.

2.1 Reliability Function

Consider a single component system in operation for the period [0, t ] and T its time to failure.
The real-valued reliability function of these system, at time t , R(t), is given by:

R(t) = P(T ≥ t), (2.1)

where P(T ≥ t) is the probability of the system will not fail during the operation period [0, t ].
If fT is the probability density function of the variable T , then

R(t) =
∫ +∞

t
fT (t)dt = 1 −

∫ t

0
fT (t)dt . (2.2)

In this paper, the interval enclosures for real-valued reliability function are obtained using the
Simpson Interval Method [3]. This method is used to calculate intervals that encompass defined
integrals over an interval [a, b] of a given real function f . In this method, we divide the integra-
tion interval [a, b] in p partitions whose limits are: a = a0 < a1 < a2 < · · · < ap = b. This
process of partitioning results in p intervals Ai = [ai−1, ai ], where i = 1, 2, . . . , p. For each
partition, one interval enclosure is obtained by

Si =
∫ ai

ai−1

f (t)dt = w(Ai )

6
(F(ai−1) + 4 f (m(Ai )) + F(ai )) − w(Ai )

5

2880
G(ξi ), (2.3)

where i = 1, 2, . . . , p, ξi ∈ Ai , w(Ai ) and m(Ai ) are the width and the midpoint of Ai , respec-
tively, and F and G are interval extensions [20, 21] for f (t) and its 4-order derivative f (4)(t).
The resulting interval of the method is given by the sum of p intervals Si evaluated by (2.3).

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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146 INTERVAL ENCLOSURES FOR RELIABILITY METRICS

This method is employed for calculating the interval Pv([0, t ]) such that
∫ t

0 fT (t)dt = P(0 <

T < t) ∈ Pv([0, t ]).
As we can see in the Lemma 2.3 of [2], considering A be a specific probabilistic event, since
P(A) = c, then Pv(A) = X = [x1, x2] and c ∈ X . In Pv([0, t ]), we consider that, in this case,
the probabilistic event A is t ≥ T ≥ 0.

This work presents implementations intended to compute intervals that encapsulate probabilities
of random variables with Exponential, Weibull and Normal distributions [2]. All the developed
implementations use Matlab [15] and IntLab toolbox [22].

For Exponential distribution,ex p1(a, b, p, α) is the method developed for calculating Pv([a, b]).
The value α is the parameter of the distribution and the values of a and b are the lower and higher
integration bounds, respectively, and thus,∫ b

a
fT (t)dt =

∫ b

a
αe−tαdt ∈ ex p1(a, b, p, α).

We have that p is a positive integer representing the number of divisions of the interval [a, b].
Therefore, p defines the resolution in which the Simpson Interval Method executes. As the value
of p increases, the width of the resulting intervals decreases. In [3], it is pointed out that the
width of the calculated interval is proportional to 1

p5 , what implies that doubling the value of p,
the width of the result decreases by a factor of 32. Moreover, high accuracy, provided by the use
of the IntLab toolbox, ensures that the intervals obtained have the least possible width that the
Simpson Interval Method allows, considering a given p.

Besides Simpson Interval Method, there are others integral numeric integration interval meth-
ods based on Riemann formula, such as Moore and Yang’s Method [18]. The use of Simpson
Interval Method has advantages over these methods, since, as described above, the Simpson’s
approach produces width intervals that decrease 32 times when the precision parameter p is dou-
bled. In Moore and Yang’s Method, doubling the respective precision parameter also results the
same decreasing rate in the width interval produced. Moreover, the Simpson Interval Method
requires that the integrand is four times continously differentiable [3], what is not a problem with
Exponential, Weibull and Normal distributions.

In Appendix A, this work presents implementations of functions aimed at the calculation of
Pv([a, b]) for Exponential, Weibull and Normal failure process distributions. The two latter men-
tioned implementations have signatures given by weibull1(a, b, p, k, λ) and normal1(a, b, p,

μ, σ). The values of k and λ are the shape and scale parameters of the Weibull distribution,
respectively, while μ and σ are the mean and standard deviation parameters of the Normal
distribution.

Definition 2.1. Let Rv be the interval function, called reliability enclosure, that encapsulates the
real-valued reliability function R of a system after the observation time t . Then,

Rv(t) = [1, 1] − Pv([0, t ]).

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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The Definition 2.1 supposes that systems must operate on the period A = [0, t ], where t > 0.
However, the domain of the Normal distribution is the set of all real numbers, including negative
values. Thus, Definition 2.1 only can be applied to Normal distribution in the case of negligible
probabilities for negative values.

We know that X ∗ Y = {x ∗ y|x ∈ X, y ∈ Y }, ∗ ∈ {+, −, ·, /}, where 0 /∈ Y , when ∗ is /. Since
x ∈ X and y ∈ Y , it follows that the real value x ∗ y also belong to the interval X ∗ Y . Therefore,

x ∗ y ∈ X ∗ Y. (2.4)

where 0 /∈ Y , when ∗ is /.

Based on (2.4), we can prove that Rv(t) encompasses R(t), or R(t) ∈ Rv(t) .

Proposition 2.1. Let T be the continuous random variable that represents the time to failure of a
given system, and its real-valued reliability function given by R(t) = 1 − P(0 < T < t). Then,
R(t) ∈ Rv(t).

Proof. 1 ∈ [1, 1] and P(0 < T < t) ∈ Pv([0, t ]) (Equation 8.7 of [3]). Then 1 − P(0 < T <

t) ∈ [1, 1] − Pv([0, t ]) ⇒ R(t) ∈ Rv([0, t ]). �

Using IntLab toolbox, this article presents reliability enclosure implementations of single com-
ponent systems. The Table 1 shows the signatures of these interval functions and its definitions
for Exponential, Weibull and Normal distributions.

Table 1: Signatures of reliability enclosure.

Distribution Implementation

Exponential con f ex p(t, p, α) = [1, 1] − ex p1(0, t, p, α)

Weibull con f weibull(t, p, k, λ) = [1, 1] − weibull1(0, t, p, k, λ)

Normal con f normal(t, p, μ, σ) = [1, 1] − normal1(0, t, p, μ, σ)

For instance, consider that the lifetime of a mechanical tool is modeled by a Weibull distribu-
tion with parameters k = 2 and λ = 10000 hours. The real probability that the mechanical
tool will not fail in the first 8000 hours and related execution time computation are R(8000) =
0.527292424043049 and 0.089822 seconds.

The computation of an interval enclosure for R(8000) with Weibull distribution, considering
p = 100, is given by

Rv(8000) = [1, 1] − Pv([0, 8000])
= con f W eibull(8000, 100, 2, 10000)

= [1, 1] − weibull1(0, 8000, 100, 2, 10000)

= [0.52729242404274, 0.52729242404335].

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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148 INTERVAL ENCLOSURES FOR RELIABILITY METRICS

The Table 2 exibiths interval enclosures for the reliability of the mechanical tool cited above after
8000 working-hours, as p are incremented. The width and computation time of the intervals can
also be observed.

Table 2: Reliability enclosure, Width of reliability enclosure and execution time, as p are
incremented, for Weibull failure distribution system.

p Rv(8000) w(Rv(8000)) Execution time(s)

5 [0.52729134642417, 0.52729322980637] < 2.0 · 10−6 0.888380

10 [0.52729239237141, 0.52729245148924] < 6.0 · 10−8 1.737012

50 [0.52729242403336, 0.52729242405247] < 2.0 · 10−11 8.599330

100 [0.52729242404274, 0.52729242404335] < 6.1 · 10−13 17.875280

200 [0.52729242404303, 0.52729242404307] < 4.0 · 10−14 35.186983

Similarly, we bring another two examples with Exponential and Normal distribution of fail-
ures. The Table 3 shows the results in the reliability enclousures computation for an Expo-
nential failure distribution system with parameter α = 4. After 2 working-hours, the real-
valued reliability function, R(2), and corresponding execution time computation are equal to
3.354626279025164 · 10−4 and 0.050303 seconds. The Table 4 exibiths data from the reliability
enclousures computation for Normal failure distribution with parameters μ = 8 and σ = 2.
After 80 working-hours, the real-valued reliability function, R(80), and related execution time
computation are equal to 0.999968328758167 and 0.087603 seconds.

Table 3: Reliability enclosure, Width of reliability enclosure and execution time, as p are

incremented, for Exponential failure distribution system.

p Rv(2) w(Rv(2)) Execution time(s)

5 [−0.085621563302, 0.278345187372] · 10−2 < 3.7 · 10−3 0.423623

10 [0.28875911756531, 0.40249872715171] · 10−3 < 1.2 · 10−4 0.771025

50 [0.33544508784544, 0.33548148452612] · 10−3 < 3.7 · 10−8 3.624166

100 [0.33546206948853, 0.33546320689571] · 10−3 < 1.2 · 10−9 7.292063

200 [0.33546261028183, 0.33546264584506] · 10−3 < 3.6 · 10−11 14.282848

As we can note in Table 2, Table 3 and Table 4, when p increases, the width of Rv(A) decreases.
We can also observe that doubling p the related interval width is decreased by a factor of 32. All
the computed intervals indeed encapsulate the related real-valued reliability function.

We also observe in Table 2, 3 and 4 that the execution time increases linearly when p is incre-
mented. The execution time computation of the real-valued reliability function is approximately
ten times lower than the corresponding one of interval enclosure, considering p = 5, which
implies a considerable overhead computation cost.

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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Table 4: Reliability enclosure, Width of reliability enclosure and execution time, as p are
incremented, for normal failure distribution system.

p Rv(80) w(Rv(80)) Execution time(s)

5 [0.99992849259341, 1.00247004587546] < 2.6 · 10−3 0.750204

10 [0.99996023275219, 1.00003965629226] < 8.0 · 10−5 1.338139

50 [0.99996831854230, 0.99996834395784] < 2.6 · 10−8 6.396252

100 [0.99996832840014, 0.99996832919439] < 8.0 · 10−10 14.061650

200 [0.99996832874636, 0.99996832877119] < 2.5 · 10−11 30.258739

2.2 Mean Time to Failure

Mean Time to Failure (Tmed) of a system is given by the expected value [17] of the random
variable T that specifies its failure process. As pointed out by Kuo and Zuo [13], Tmed is the
lifetime of a system when repairs are not allowed. This metric is

Tmed =
∫ +∞

0
t fT (t)dt . (2.5)

In Equation (2.5), we have that the limits of the integral are 0 e +∞, since T assumes only
non-negative values.

Proposition 2.2. Let R(t) be the real-valued reliability function of a system. The Mean Time to
Failure is

Tmed =
∫ +∞

0
R(t)dt . (2.6)

Proof. On Ebeling [5]. �

Proposition 2.3. Let Tmed be the real number evaluated by Equation 2.6. If R(t) is a reliability
function, so Tmed < +∞.

Proof. The Equation (2.6) can be represented by the following infinitesimal sum:

Tmed = lim
n→+∞

n∑
i=1

R(ξi )w([xi−1, xi ]),

where ξ1 ∈ [x0, x1], ξ2 ∈ [x1, x2], . . . , ξn ∈ [xn−1, xn]. The intervals [xi−1, xi ], i = 1, 2, . . . , n,
are identical partitions of the interval limn→+∞[0, n], considering that x0 = 0 and xn = n. We
note that the width w([xi−1, xi ]) is identical for all the partitions.

We know that R(+∞) = 0, so, according to [25], we have that the infinitesimal sum is conver-
gent, i.e., Tmed < +∞. �

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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Based on Equation 2.6, this paper defines the interval function which yields an interval enclosure
for Tmed .

Definition 2.2. Let T be a random variable that represents the time to failure of a system and
Rv(t) be the reliability enclosure of a specified real-valued reliability function R. Consider the
real number tM AX and a positive integer n, where n → ∞. Suppose the interval [0, tM AX ] and
its partitions [x0, x1], [x1, x2], . . . , [xn−1, xn], where x0 = 0 and xn = tM AX . Also consider that
all partitions have the same width w= tM AX

n . So, the interval function that encloses the Mean
Time To Failure, considering T , is defined as

Tmedv = lim
n→+∞[Rv(tm1) + Rv(tm2) + · · · + Rv(tmn)]w. (2.7)

The values tm1, tm2, . . . , tmn are, respectively, the midpoints of the partitions [x0, x1], [x1, x2],
. . . , [xn−1, xn]. For the implementation of the interval function for the mean time to failure,
we use the parameters tM AX and n. So, we must choose the value of tM AX in such way that
R(tM AX ) ≈ 0. The value of n represents the number of partitions of the interval [0, tM AX ],
defining the precision in which the interval enclosure is obtained.

The Table 5 shows the signatures of interval enclosures for mean time to failure for Exponential,
Weibull and Normal distributions.

Table 5: Signatures of interval function for mean time to failure.

Distribution Implementation

Exponential mtt f Interval Ex p(α, tM AX , n, p)

Weibull mtt f IntervalW eibull(k, λ, tM AX , n, p)

Normal mtt f Interval Normal(μ, σ, tM AX , n, p)

In the Appendix A, we can observe more details about the implementations of the interval enclo-
sures for the mean time to failure for Exponential, Weibull and Normal distributions.

To illustrate the use of Tmedv in bounding the related real-valued metric, assume that T is a
Normal random variable with parameters μ = 8 and σ = 2. In this case, suppose tM AX = 16,
which implies that R(16) = 6.6613 · 10−16 or R(16) ≈ 0, n = 50 and p = 5. The real value
of mean time to failure for the considered system and the related execution time computation are
Tmed = μ = 8 and 2.634465 seconds (this execution cost and all real value of mean time to
failure measures were based on Equation 2.6).

The interval enclosure for Tmed is given by

Tmedv = mtt f Interval Normal(8, 2, 16, 50, 5)

= [7.98389618066430, 8.01618738659977].

In fact, we have that Tmed ∈ Tmedv . However, it can be seen that when the condition R(tM AX ) ≈
0 is not satisfied, the interval obtained is not a enclosure. Table 6 presents computed intervals for

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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different values of tM AX . It is observed that when tM AX ≤ 12 the intervals do not encapsulate
the real value for the mean time to failure (μ = 8).

Table 6: Interval enclosures for mean time to failure, considering tM AX variation.

tM AX Tmedv
R(tM AX )

16 [7.98388828158800, 8.01618934801887] 6.6613 · 10−16

14 [7.99026276808957, 8.00936514850080] 9.8659 · 10−10

12 [7.98065312859909, 7.98618574479369] 3.1671 · 10−5

10 [7.83278842107344, 7.83448378185583] 0.0227

Once the computation of Tmedv involves n evaluations of Rv , the parameter p is also used to
enclose the mean time to failure. The Table 7 illustrates the variation of the interval widths and
related execution times, since p increases, considering tM AX = 20 and n = 50.

Table 7: Interval enclosures for mean time to failure, considering p variation, for
Normal failure distribution system.

p Tmedv
w(Tmedv

) Execution Time(s)

5 [7.95139633268973, 8.06968007167273] < 1.2 · 10−1 46.126105

6 [7.97723844794519, 8.02123846433367] < 4.5 · 10−2 53.791730

7 [7.98380610504386, 8.01751702986318] < 3.4 · 10−2 62.819581

8 [7.99300780057101, 8.00823643857211] < 1.6 · 10−2 70.775011

9 [7.99595743932975, 8.00531274894078] < 9.4 · 10−3 80.984591

10 [7.99776142904487, 8.00352002468972] < 5.8 · 10−3 89.759203

We also bring two examples with Exponential and Weibull distribution of failures. The Table 8
exibiths the results in the mean time to failure enclousure computation for Exponential failure
distribution with parameter α = 0.01. The real-valued mean time to failure and related execution
time are equal to Tmed = 100 and 5.925969 seconds. The Table 9 shows data from mean time
to failure enclousure computation for Weibull distribution of failures with parameters k = 3,
λ = 50. The real-valued mean time to failure and corresponding execution time are equals to
Tmed = 44.642793484075547 and 8.679764 seconds.

Table 8: Interval enclosures for mean time to failure, since p increases, consid-

ering tM AX = 1000 and n = 150, for Exponential failure distribution system.

p Tmedv
w(Tmedv

) Execution Time(s)

5 [99.390693383917,101.241198466660] < 1.9 · 100 63.858197

6 [99.720562136152, 100.464238625810] < 7.5 · 10−1 76.539810

7 [99.851172010656, 100.195244622283] < 3.5 · 10−1 87.797895

8 [99.909610963321, 100.086088880303] < 1.8 · 10−1 98.893686

9 [99.938339164273, 100.036271870733] < 1.0 · 10−1 110.999310

10 [99.953555520054, 100.011383803893] < 6.0 · 10−2 122.218566

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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Table 9: Interval enclosures for mean time to failure, since p increases, considering
tM AX = 120 and n = 150, for Weibull failure distribution system.

p Tmedv w(Tmedv ) Execution Time(s)

5 [44.58350915710464, 44.72000067070699] < 1.4 · 10−1 206.545242

6 [44.62385044500201, 44.67604159505329] < 5.3 · 10−2 236.261671

7 [44.63623868424217, 44.66247773340652] < 2.7 · 10−2 253.500081

8 [44.64224234478933, 44.65604948443448] < 1.4 · 10−2 286.737339

9 [44.64532405850133, 44.65279245624996] < 8.0 · 10−3 323.563472

10 [44.64669686045618, 44.65133965553606] < 5.0 · 10−3 366.583825

As it is shown in Tables 7, 8 and 9, the interval enclosures for mean time to failure bound
corrresponding real values mean time to failure. It also could be observed that the use of interval
approach implies a high computation cost, since n evaluations of Rv must be done to achieve the
interval proposed. The results brought in Tables 8 and 9, for example, the n value employed was
150 to guarantee precision in the interval enclosures.

2.3 Hazard rate function

Hazard rate function, λ(t), is a function that determines an instantaneous failure rate of a system
in a specified instant t . The definition of λ(t) [5] is based on the conditional probability:

P(t ≤ T ≤ t + �t |T ≥ t) = R(t) − R(t + �t)

R(t)
, (2.8)

where R(t) > 0.

Equation 2.8 defines the chance of a system performs its intended function satisfactorily for a
specified period of time �t , since do not occur faults in the interval [0, t ]. So, the conditional
probability presented in (2.8) divided by the time unit (�t ) is

R(t) − R(t + �t)

R(t)�t
. (2.9)

Equation 2.9 determines the failure rate per time unit of a system. Thus, the instantaneous failure
rate is given by the conditional probability of fault occurences per time unit, when �t → 0.
Then,

λ(t) = lim�t→0

−[R(t + �t) − R(t)]
�t

· 1

R(t)

= −d R(t)

dt
· 1

R(t)
= fT (t)

R(t)
. (2.10)

Based on the Equation 2.10, this paper defines an interval function that encloses real value of the
hazard rate function for a specified system.
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Definition 2.3. Let T be a random variable that represents the time to failure of a system and
Rv(t) be the reliability enclosure for its real-valued reliability function R. The interval enclosure
for the real-valued hazard rate function in an instant of time t is given by:

λv(t) = [∇ fT (t), � fT (t)]
Rv(t)

,

where 0 /∈ Rv(t).

Proposition 2.4. Let λ(t) = fT (t)
R(t) . So, λ(t) ∈ λv(t).

Proof. We know that fT (t) ∈ [∇ fT (t), � fT (t)] and R(t) ∈ Rv(t). Thus,

fT (t)

R(t)
∈ [∇ fT (t), � fT (t)]

Rv(t)
⇒ λ(t) ∈ λv(t),

when 0 /∈ Rv(t). �

The Table 10 illustrates the signatures of interval functions that encapsulate the real-valued haz-
ard rate function for Exponential, Weibull and Normal distributions.

Table 10: Signatures of interval function for hazard rate function.

Distribution Implementation

Exponential f ailureRateInterval Ex p(t, p, α)

Weibull f ailureRateIntervalW eibull(t, p, k, λ)

Normal f ailureRateInterval Normal(t, p, μ, σ)

For instance, suppose T is an Exponential random variable with parameter α = 0.01. In this case,
considering the instant t = 100, the real-valued hazard rate function and related execution time
are equal to λ(100) = α = 0.01 and 0.054298 seconds. The Table 11 illustrates the variation of
the hazard rate interval widths and related execution times, since p increases.

Table 11: Interval enclosures for hazard rate, considering p variation, for Exponential
failure distribution system.

p Tmedv w(Tmedv ) Execution Time(s)

5 [0.00999999900224, 0.01000000091145] < 2.0 · 10−9 0.491079

10 [0.00999999996949, 0.01000000002916] < 6.0 · 10−11 0.942291

50 [0.00999999999999, 0.01000000000001] < 2.0 · 10−14 3.970694

100 [0.00999999999999, 0.01000000000001] < 2.0 · 10−14 8.780558

200 [0.00999999999999, 0.01000000000001] < 2.0 · 10−14 16.230988

Similarly, we bring another two examples with Normal and Weibull distribution of failures. The
Table 12 shows the results in the hazard rate enclousures computation for a Normal failure dis-
tribution system with parameters μ = 8 and σ = 2. After 10 working-hours, the real-valued
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hazard rate function, λ(10), and the related execution time are equal to 1.524830884806074 and
0.095419 seconds. The Table 13 exibiths data from the hazard rate enclousures computation for
Weibull failure distribution with parameters k = 2 and λ = 10000. After 8000 working-hours,
the real-valued reliability function, λ(8000), and corresponding execution time computation are
equal to 1.6 · 10−4 and 0.101747 seconds.

Table 12: Interval enclosures for hazard rate function, considering p variation, for Normal
failure distribution system.

p Tmedv w(Tmedv ) Execution Time(s)

5 [1.51863640703179, 1.53229224115192] < 1.4 · 10−2 1.008209

10 [1.52460379156082, 1.52507613749420] < 4.8 · 10−4 2.071646

50 [1.52483080854381, 1.52483096220953] < 1.6 · 10−7 11.009327

100 [1.52483088240966, 1.52483088722032] < 4.9 · 10−9 22.419977

200 [1.52483088473101, 1.52483088488142] < 1.6 · 10−10 52.203656

Table 13: Interval enclosures for hazard rate function, considering p variation, for Weibull
failure distribution system.

p Tmedv
w(Tmedv

) Execution Time(s)

5 [0.15999975550201,0.16000032699005] · 10−3 < 5.8 · 10−10 1.216593

10 [0.15999999167181,0.16000000961035] · 10−3 < 1.8 · 10−11 2.054348

50 [0.15999999999714,0.16000000000294] · 10−3 < 5.8 · 10−15 9.105660

100 [0.15999999999990,0.16000000000010] · 10−3 < 2.1 · 10−16 17.899182

200 [0.15999999999999,0.16000000000001] · 10−3 < 2.0 · 10−17 35.608336

As the computation process of hazard rate function is similar to reliability function, the execution
time of interval enclosure for hazard rate function has the same order of magnitude as the one
of reliability enclosure. This could be noted comparing the execution time in examples brought
by Section 2.1 and Section 2.3. In Table 11, we can observe that, for p > 50, the interval width
achieved the least amplitude possible, which shows us that the computation cost of increasing p
value does not result in a higher precision.

3 VALIDATION OF INTERVALS FOR COMPLEX SYSTEMS MODELED
IN SHARPE

Complex systems [5] are compound by a set of components that act together to perform a speci-
fied function that could not be done with the absence of one of its components. We suppose that
a component can present two distinct and not simultaneous states: available and unavailable. In
the last one, we consider that a component has at least one fault that does not allow its correct
operation. Thus, the state of each component can be represented by the discrete random variable
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that is assigned to two different values. Let xi be the state of the i-esimo component of a specified
system. Then,

xi =
{

1, if the component i is available,

0, if the component i is unavailable.

Consider the complex system L with n components. So, the vector x = (x1, x2, . . . , xn) repre-
sents the state of all the components. As well as its components, L also holds one of the two
mentioned states. The state of L , called φ, is a function of the vector x. Then, φ = φ(x) =
φ(x1, x2, . . . , xn).

Thus, the function φ is determined by the components’ configuration of a given system. The
following configurations are addressed in this section: series and parallel.

Figure 1: (a) Series configuration and (b) Parallel configuration.

The Figure 1(a) indicates that one complex system with components in series [5, 13] exhibits
only one critical path. Let L be the complex system compound by n components in series. The
function φ that defines the state of L is

φ(x) =
n∏

i=1

xi = min(x1, x2, . . . , xn). (3.1)

The Equation 3.1 defines that the complex system will fail whether only one of its components
fail. So, considering that L has two components, if only one component fails L also will fail.
Thus, assuming that the components’ failure process of L are independent, the reliability function
of L is given by

R(t) = R1(t) × R2(t) × · · · × Rn(t) =
n∏

i=1

Ri (t). (3.2)

The Figure 1(b) outlines the parallel configuration [5, 13], also called redundant. Systems with
this configuration fail whether all of its components are in an unavailable state in a specified
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instant of time. Let L be a system formed by n components connected in parallel. The function
φ that defines the state of L is

φ(x) = 1 −
n∏

i=1

(1 − xi) = max(x1, x2, . . . , xn). (3.3)

Therefore, there are n critical paths in the redundant configuration. Thus, the probability that L
does not fail in the period of time [0, t ] is given by

R(t) = 1 −
n∏

i=1

[1 − R(i)(t)]. (3.4)

This section is devoted to validate the proposed reliability enclosures for complex systems. In
this way, the SHARPE software [9, 23] was employed in such manner that the real values of
reliability function were generated and compared with corresponding interval enclosures. This
analysis was accomplished using four case of studies, in which complex systems were modeled
in SHARPE. The integration method used in SHARPE was Simpson’s rule [24].

The Matlab software enables two formats to display the computed intervals. The first one is
format short which results fixed-decimal format with 4 decimal digits after decimal point num-
bers [15]. The last option, format long, yields fixed-decimal format with 15 decimal digits after
the decimal point numbers. The SHARPE software only exhibits 8 significants decimals digits.
Therefore, to confirm whether the obtained intervals bound the values computed by SHARPE,
we use interval computation with format short configuration. In order to perform the validation
of intervals with format long configuration, we use values computed by the previously specified
computational platform, which results binary64 numbers displayed, in this paper, with 16 deci-
mal digits after the decimal point. In all cases, we use p = 200 for all the interval calculations,
since, as we will observe, the width of the obtained intervals achieved a reasonable precision.

The computation of the real-valued reliability function was based on systems that have com-
ponents with series and parallel configurations simultaneously. According to [5], the reliability
function computation of these systems involve their decomposition into subsystems. Thus, the
reliability function’s evaluation of each subsystems are done and, then, the obtained values are
combined in such way that the reliability function of all the system is calculated. Due to this
computation process, the reliability metrics calculated related to complex systems is prone to
errors caused by the propagation of round-off and truncation errors.

3.1 Case 1

Let W be the system outlined in Figure 2 compound by three subsystems: W1 (formed uniquely
by the component block0), W2 (formed by the components block1, block3, block4 and block5
connected in parallel) and W3 (formed by the components block2, block6, block7, block8 and
block9 also connected in parallel). Consider that the components of W1 has Exponential distri-
bution of failures with parameter α0 = 5 · 10−12 and that the components of W2 and W3 have
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Exponential distribution with parameter α1 = 2 · 10−11. The real-valued reliability function of
W , considering observation time t = 20, was evaluated by the SHARPE software and the pre-
viously specified computational platform and compared with corresponding interval enclosures
(Table 14).

Figure 2: Representation of the system W , modeled by the SHARPE software.

Table 14: Comparison between the real-valued reliability function of the system W
evaluated by SHARPE, R̃(20), and the specified computational platform, R(20),
and the reliability enclosure, considering short and long configurations.

R̃(20) 1.00000000

Rv(20) (format single) [0.9999, 1.0000]

R(20) 0.999999999900000

Rv(20) (format long) [0.99999999989999, 0.99999999990001]

We can observe that the interval enclosure with format single configuration contains the value
of R̃(20). We also note that the computed interval with double precision encapsulates the real
value obtained by the specified computational platform. In the case above, we observe that the
real-valued reliability function calculated by SHARPE is rounded to 1. So, if we do not use
the interval enclosure, the computed value by SHARPE is rounded to the value 1. This might
forbidden that comparisons among two systems with different reliability function values close to
the real number 1 could be done, since the computed values are rounded to the same punctual
value.

3.2 Case 2

Let M be the system outlined in Figure 3 compound by five subsystems: M1 (formed uniquely
by the component block0), M2 (formed by the components block1, block4 and block5 connected
in parallel), M3 (formed by the components block9, block6, block7 and block8 also connected
in parallel), M4 (formed by the components block3 and block11 connected in parallel) and M5
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(formed by the components block10 and block12 connected in series). Consider that the com-
ponents of M1 and M5 have Exponential distribution of failures with parameter α0 = 1.2, the
components of M2 have Exponential distribution with parameter α1 = 0.05, the components
of M3 have Exponential distribution with parameter α3 = 0.08 and the components of M4 have
Exponential distribution of failures with parameter α4 = 0.5. The real-valued reliability function
of M , considering observation time t = 20, was evaluated by the SHARPE software and the pre-
viously specified computational platform and compared with corresponding interval enclosures
(Table 15).

Figure 3: Representation of the system M , modeled by the SHARPE software.

Table 15: Comparison between the real-valued reliability function of the sys-
tem M evaluated by SHARPE, R̃(20), and the specified computational platform,
R(20), and the reliability enclosure, considering short and long configurations.

R̃(20) 0.00000000

Rv(20) (format single) [−0.3364, 0.3615] · 10−29

R(20) 2.169808968150444 · 10−36

Rv(20) (format long) [−0.33637728687207, 0.36140951783338] · 10−29

In this study of case (Case 2), we also observe that the computed intervals with single and long
configuration enclose the real values obtained by the SHARPE software and the specified compu-
tational platform, respectively. In this case, for instance, if we use the reliability value computed
by the SHARPE, any multiplication using this numeric value will also result in zero. On other
hand, the use of the calculated intervals avoids this type of numeric problem.

3.3 Case 3

Let G be the system outlined in Figure 4 compound by three subsystems: G1 (formed uniquely
by the component block0), G2 (formed by the components block3 and block5 connected in
parallel) and G3 (formed by the parallel composition of the subsystems block1 and block6 in
series, block2 and block7 in series and block4 and block8 also in series). Consider that the
components of G1 and G2 have Weibull distribution of failures with parameters λ0 = 1 and
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k0 = 5, the components of G3 have Weibull distribution with parameters λ1 = 1 and k1 = 3.
The real-valued reliability function of G, considering observation time t = 1, was evaluated by
the SHARPE software and the previously specified computational platform and compared with
corresponding interval enclosures (Table 16).

Figure 4: Representation of the system G, modeled by the SHARPE software.

Table 16: Comparison between the real-valued reliability function of the sys-
tem G evaluated by SHARPE, R̃(1), and the specified computational platform,

R(1), and the reliability enclosure, considering short and long configurations.

R̃(1) 0.0780906406

Rv(1) (format single) [0.0780, 0.0781]

R(1) 0.078090640623532

Rv(1) (format long) [0.07809064062237, 0.07809064062470]

As we could observe in Cases 1 and 2, in the Case of study 3 (formed by components with
Weibull distribution of failures), we also validate that the computed intervals for Weibull distri-
bution enclose the real values obtained by the SHARPE software and the specified computational
platform.

3.4 Case 4

Let V be the system outlined in Figure 5 compound by three subsystems: V1 (formed uniquely by
the component block0), V2 (formed by the components block3 and block5 connected in parallel)
and V3 (formed by the components block6, block1, block2, block4, block7 in parallel). Consider
that the component of V1 has Normal distribution of failures with parameters μ0 = 10 and
σ0 = 2, the components of V2 have Normal distribution of failures with parameters μ1 = 8 and
σ1 = 2, the components of V3 have Normal distribution with parameters μ2 = 12 and σ2 = 3.
The real-valued reliability function of V , considering observation time t = 20, was evaluated
by the previously specified computational platform and compared with corresponding interval
enclosure (Table 17).

The SHARPE software does not implement Normal failure distribution [24]. Therefore, the Case
of study 4 only presents comparison between the real value computed by the specified computa-
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Figure 5: Representation of the system V , modeled by the SHARPE software.

Table 17: Comparison between the real-valued reliability function of the
system V evaluated by the specified computational platform, R(20), and the

reliability enclosure, considering long configuration.

R(20) 6.958564143474359 · 10−13

Rv(20) (format long) [0.69546030782011, 0.69625251864393] · 10−12

tional platform and the reliability enclosure with long configuration. As could be observed in the
other cases, the interval enclosure obtained for the complex system bounds the related punctual
value.

4 CONCLUSIONS

This paper presented a wide set of interval enclosures definitions for reliability metrics, that
controls round-off and truncation errors produced by the computation of the corresponding real
values. The intervals are obtained using high accuracy in the floating-point system employed.

In order to summary this article, the Tables 18 and 19 outline the main original contributions
of this paper. Table 18 shows interval enclosures definitions for reliability metrics. Table 19
presents implementations’ signatures for interval enclosures, considering Exponential, Weibull
and Normal distributions.

In Table 18, the interval proposed for reliability function is defined in [16]. The interval defini-
tions proposed for mean time to failure and hazard rare function are original contributions of this
work.
In this paper, all the intervals produced by the interval functions of Table 19 indeed bound the
related real values. The quality of the results produced, i.e. interval width, can be improved
increasing p parameter. However, there is a tradeoff between width reduction and computation
cost. The minimization of interval width only can be achieved with a bigger execution time.
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Table 18: Summary of interval enclosures definitions for reliability metrics.

Reliability metric Interval definition proposed

Reliability function Rv(t) = [1, 1] − Pv([0, t ])
Mean time to failure Tmedv = lim

k→+∞
k∑

n=1
Rv(tmn)w

Hazard rate function λv(t) = [∇ fT (t),� fT (t)]
Rv(t)

Table 19: Summary of implementations’ signatures for interval enclosures, considering
Exponential, Weibull and Normal distributions.

Failure distribution Reliability metric IntLab implementation

Reliability function con f ex p(t, p, α)

Exponential Mean time to failure mtt f Interval Ex p(α, max, n, p)

Hazard rate function f ailureRateInterval E xp(t, p, α)

Reliability function con f weibull(t, p, k, λ)

Weibull Mean time to failure mtt f IntervalW eibull(k, λ, max, n, p)

Hazard rate function f ailureRateIntervalW eibull(t, p, k, λ)

Reliability function con f normal(t, p, μ, σ)

Normal Mean time to failure mtt f Interval Normal(μ, σ, max, n, p)

Hazard rate function f ailureRateInterval N ormal(t, p, μ, σ)

In this context, the use of interval approach rather than employing punctual values brings an
overhead computation cost that must be taken into account. For example, as shown in this work,
reliability enclosure computation can spend 10 times more than the real-valued function. Finally,
in the four study of cases presented, this paper succesfully validates the reliability enclosure
proposed with related real-valued reliability function of complex systems computed by SHARPE
software and specified computational platform, considering Exponential, Weibull and Normal
failure distributions.

RESUMO. A computação de métricas de confiabilidade (função de confiabilidade, tempo

médio para falhas e taxa de falhas) envolve número reais. Portanto, problemas numéricos são

gerados devido à limitação de representar e operar números reais em computadores. Esse

artigo foca no cálculo de intervalos que limitam erros numericos introduzidos durante o

processo de computação de métricas de confiabilidade em máquinas digitais, considerando

as distribuições de falhas Exponencial, Weibull e Normal. Funções intervalares foram pro-

postas, baseadas na matemática intervalar e aritmética de exatidão máxima, para contro-

lar erros numéricos introduzidos pelo cálculo de valores de métricas de confiabilidade para

sistemas complexos. As funções intervalares, implementadas utilizando a biblioteca Intlab,
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produzem intervalos encapsuladores para valores reais de métricas de confiabilidade e o soft-

ware SHARPE foi usado para a validação dos resultados. A análise dos resultados numéricos

obtidos com as funções propostas mostraram que os intervalos realmente encapsulam os

números reais calculados pelo software SHARPE, indicando que essas funções, de fato, são

uma alternativa para auto-validação desses valores de confiabilidade de sistemas complexos.

Palavras-chave: confiabilidade, matemática intervalar, aritmética de exatidão máxima,

intervalos encapsuladores.
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A IMPLEMENTATIONS OF INTERVAL ENCLOSURES FOR EXPONENTIAL,
WEIBULL AND NORMAL DISTRIBUTIONS

This appendix presents the implementation, coded in IntLab, of interval functions, for probabili-
ties with Exponential, Weibull and Normal distributions. It is also provided the implementation
of Interval Simpson Method and interval functions for reliability metrics for systems with Expo-
nential, Weibull and Normal failure distributions.
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Figure 6: Interval Simpson Method.
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Figure 7: Interval enclosure for Exponential distribution.
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Figure 8: Interval enclosure for Weibull distribution.
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Figure 9: Interval enclosure for Normal distribution
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Figure 10: Interval enclosure for reliability function considering component with Exponential
failures distribution.

Figure 11: Interval enclosure for mean time to failure considering component with Exponential

failures distribution.
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Figure 12: Interval enclosure for hazard rate function considering component with Exponential
failures distribution.

Figure 13: Interval enclosure for reliability function considering component with Weibull failures
distribution.

Tend. Mat. Apl. Comput., 17, N. 2 (2016)



�

�

“main” — 2016/8/29 — 23:14 — page 170 — #28
�

�

�

�

�

�

170 INTERVAL ENCLOSURES FOR RELIABILITY METRICS

Figure 14: Interval enclosure for mean time to failure considering component with Weibull fail-
ures distribution.

Figure 15: Interval enclosure for hazard rate function considering component with Weibull fail-
ures distribution.
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Figure 16: Interval enclosure for reliability function considering component with Normal failures
distribution.

Figure 17: Interval enclosure for mean time to failure considering component with Normal fail-
ures distribution.
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Figure 18: Interval enclosure for hazard rate function considering component with Normal fail-
ures distribution.
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