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ABSTRACT. The problem of joint approximate diagonalization of symmetric real matrices is addressed.
It is reduced to an optimization problem with the restriction that the matrix of the similarity transforma-
tion is orthogonal. Analytical solutions are derived for the case of matrices of order 2. The concepts of
off-diagonalizing vectors, matrix amplitude, which is given in terms of the eigenvalues, and partially com-
plementary matrices are introduced. This leads to a geometrical interpretation of the joint approximate
diagonalization in terms of eigenvectors and off-diagonalizing vectors of the matrices. This should be
helpful to deal with numerical and computational procedures involving high-order matrices.
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1 INTRODUCTION

Linear Algebra has many applications in science and engineering [2, 6, 7]. In particular, the calcu-
lation of eigenvalues and eigenvectors of a linear operator allows one to find the main directions
of a rotating body, the normal modes of an oscillating mechanical and/or electrical system and
the stationary states of a quantum system. Such a calculation leads to a similarity transforma-
tion that produces a diagonal representation of the linear operator, thus the process is called as a
diagonalization.

There are cases where several linear operators are relevant in the analysis of the system un-
der investigation. When the operators commute, they may be diagonalized by the same similar-
ity transformation. This problem has been numerically addressed by Bunse-Gerstner et al. [5].
Their algorithm is an extension of the Jacobi technique that generates a sequence of similarity
transformations that are plane rotations. Moreover, Lathauwer [11] established a link between
the canonical decomposition of higher-order tensors and simultaneous matrix diagonalization.

In the case of noncommuting operators, researchers try to find a compromise solution that nearly
diagonalizes the matrices representing the operators. Several methods for joint approximate
diagonalization have been proposed in the literature. They differ in how the optimization prob-
lem is formulated and solved, and in the conditions for both the diagonalizing matrix and the set
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of matrices representing the operators. For instance, one may look for the minimum of the sum
of the squared absolute values of the off-diagonal terms of all the transformed matrices.

Cardoso and Souloumiac [8] approached the simultaneous diagonalization problem by iterat-
ing plane rotations. They complemented the method of Bunse-Gerstner et al. [5] by giving a
closed-form expression for the optimal Jacobi angles. Pham [18] provided an iterative algorithm
to jointly and approximately diagonalize a set of Hermitian positive definite matrices. The au-
thor minimizes an objective function involving the determinants of the transformed matrices.
Vollgraf et al. [20] used a quadratic diagonalization algorithm, where the global optimization
problem is divided into a sequence of second-order problems. In the work by Joho [14] the
joint diagonalization problem of positive definite Hermitian matrices is considered. The authors
propose an algorithm based on the Newton method, allowing the diagonalizing matrix to be com-
plex, nonunitary, and even rectangular. One of the contributions of their work is the derivation
of the Hessian function in closed form for every diagonalizing matrix and not only at the criti-
cal points. Tichavskỳ and Yeredor [19] proposed a low-complexity approximate joint diagonal-
ization algorithm, which incorporates nontrivial block-diagonal weight matrices into a weighted
least-squares criterion. Glashoff and Bronstein [12] analyzed the properties of the commutator of
two Hermitian matrices and established a relation to the joint approximate diagonalization of the
matrices. Congedo et al. [10] explored the connection between the estimation of the geometric
mean of a set of symmetric positive definite matrices and their approximate joint diagonalization.

An important application of the joint approximate diagonalization problem is Blind Source
Separation (BSS), treated by Belouchrani et al. [3], Albera et al. [1], Yeredor [21], McNeill and
Zimmerman [16], Chabriel et al. [9], and Boudjellal et al. [4]. Besides this, in solid-state physics,
the search for maximally-localized Wannier functions may be reduced to a joint diagonalization
problem [13]. In such a case, one has to deal with three matrices of infinite order.

In the present work, analytical solutions for the problem of joint approximate diagonalization
are given for a set of symmetric real matrices of order 2. This leads to a new and deeper geo-
metrical interpretation of the diagonalization process that should improve numerical and com-
putational procedures required to deal with larger matrices. Several pairs of matrices are inves-
tigated in order to clarify the role played by the amplitudes and the main directions of each
operator. In this respect, the introduction of the concepts of off-diagonalizing vectors, matrix
amplitude and partially complementary matrices proves to be very helpful.

The structure of the manuscript is as follows: § 2 discusses the main concepts and procedures
for the case of a single matrix, § 3 sets up the optimization problem for several symmetric real
matrices, § 4 presents an analytical solution for the particular case of several matrices of order 2,
and § 5 focuses on a pair of 2×2 matrices and discusses the geometrical aspects of the procedure.
The main findings of the work are summarized in § 6.

2 A SINGLE MATRIX OF ORDER N: EIGENVECTORS AND
OFF-DIAGONALIZING VECTORS

The diagonalization of a real symmetric square matrix M can be viewed as an optimization
problem. One should find a nonsingular real square matrix U of the same order, such that the

Tend. Mat. Apl. Comput., 17, N. 1 (2016)
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product M′ = U
−1
MU is a diagonal matrix [15, 17]. Let us define a function, denoted by the

term “off ”, that gives the sum of the squared values of the off-diagonal entries of each square
matrix. M′ is diagonal when off (M′) = 0. Since every real symmetric square matrix M can be
diagonalized, the function f (M,U) = off (U−1

MU) has a global minimum and its value is zero.
The diagonalization ofM is then reduced to finding the minimizing matrix U.

The columns of the diagonalizing matrix U are eigenvectors of the matrix M. To each of those
vectors corresponds an eigenvalue in the main diagonal of M′ [15]. Moreover, the eigenvectors
of different eigenvalues are known to be orthogonal. In the case of a degenerate eigenvalue of
multiplicity d , a set of d orthogonal eigenvectors may be chosen. Therefore, one may look for a
minimizing matrix U having orthogonal columns. Additionally, the columns may be normalized
while remaining eigenvectors of M. In this way, the study may be restricted to matrices U, with
transpose denoted by Ũ, such that

ŨU = UŨ = I. (2.1)

This means U is an orthogonal matrix. Therefore, the search for the minimum may be restricted
to the set O of orthogonal matrices of order n.

Taking (2.1) into account, the objective function may be written as

f (M,U) = off (ŨMU). (2.2)

As f is a function of n2 entries of U, it is a polynomial of fourth degree in Rn2
. Since O is

a compact subset of Rn2
, the existence of both the minimum and the maximum values of the

continuous function f (M,U) is guaranteed. Any column of a maximizing matrixUwill be called
as an off-diagonalizing vector ofM. One may also say that such a matrix U off-diagonalizesM.

To understand this, one may consider a real symmetric matrix of order 2, given by

M =
(

a b/2
b/2 c

)
. (2.3)

Since U is an orthogonal matrix, it may be written in the form

U =
(

cos(θ) cos(θ ′)
sin(θ) sin(θ ′)

)
, (2.4)

where θ and θ ′ give the directions of the vectors in the first and second columns of U. Taking
into account the fact that such vectors are orthogonal, one may take θ ′ = θ ± π/2. As a result,
the transformation matrix has the form (see Ref. [2])

U =
(

cos(θ) ∓ sin(θ)

sin(θ) ± cos(θ)

)
, (2.5)

and the objective function becomes

f (M,U) = [(a − c) sin(2θ) − b cos(2θ)]2

2
. (2.6)

Tend. Mat. Apl. Comput., 17, N. 1 (2016)



�

�

“main” — 2016/4/17 — 20:14 — page 116 — #4
�

�

�

�

�

�

116 JOINT APPROXIMATE DIAGONALIZATION OF SYMMETRIC REAL MATRICES OF ORDER 2

When a = c and b = 0, the objective function vanishes everywhere. This is because the ma-
trix is a scalar multiple of the identity matrix and such a matrix commutes with every square
matrix M. Instead, when a �= c or b �= 0, the objective function oscillates between zero and
its maximum value. The values of θ leading to such extreme values can be obtained from the
derivative of f (M,U) with respect to θ . However, the simplicity of this function allows the opti-
mization process to be performed algebraically. The vector (a − c, b) is the product of its norm,√

(a − c)2 + b2, with the unit vector (cos(2φ), sin(2φ)), where φ is a real number fulfilling

cos(2φ) = a − c√
(a − c)2 + b2

and sin(2φ) = b√
(a − c)2 + b2

. (2.7)

Therefore, the objective function may be written as

f (M,U) = (a − c)2 + b2

2
sin2[2(θ − φ)] = C (1 − cos[4(θ − φ)]), (2.8)

where

C = (a − c)2 + b2

4
. (2.9)

The objective function oscillates harmonically with both the mean value and the amplitude
given by C. It should be noted that C vanishes when a = c and b = 0.

When C �= 0, the eigenvectors (off-diagonalizing vectors) ofM are along the directions given by

θ = φ + qπ

4
, (2.10)

where q is an even (odd) integer. The corresponding optimal value of the objective function are
fmin = 0 and fmax = 2C. Moreover, each off-diagonalizing vector bisects the angle between
two orthogonal eigenvectors, and conversely.

It is very interesting to note that the amplitude C may be easily expressed in terms of the trace,
a + c, and the determinant, ac − b2/4, ofM, namely

C = (a + c)2 − 4ac + b2

4
= Tr(M)2

4
− det(M). (2.11)

Since the trace and the determinant are invariant under the similarity transformation given by
U, the matrixM has the same amplitude as its diagonalized form

D =
(

λ1 0

0 λ2

)
, (2.12)

where λ1 and λ2 are the eigenvalues of M. Therefore, C equals half the maximum value of
f (D,U). According to Eq. (2.6), this is given by

f (D,U) = (λ1 − λ2)
2 sin2(2θ)

2
. (2.13)

Then, the amplitude ofM is also given by

C = (λ1 − λ2)
2

4
. (2.14)

Tend. Mat. Apl. Comput., 17, N. 1 (2016)
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Of course, since Tr(M) = λ1 + λ2 and det(M) = λ1λ2, the latter equation is equivalent to
Eq. (2.11).

In order to simplify the equations for matrices of order n, it is useful to recall the Frobenius norm
of a real square matrixM, whose square is given by the sum of the squares of the entries mi j of

the matrix, that is,

‖M‖2 =
n∑

i, j=1

m2
i j . (2.15)

For a symmetric matrixM, the squared norm is the trace ofM2, that is,

‖M‖2 = Tr[M2]. (2.16)

Since ŨMU is symmetric, we have

‖ŨMU‖2 = Tr[ŨMUŨMU] = Tr[ŨM2
U] = Tr[M2] = ‖M‖2.

Moreover,
f (M,U) = ‖M‖2 − g(M,U), (2.17)

where

g(M,U) =
n∑

i=1

[(ŨMU)ii ]2. (2.18)

Therefore, the maximum (minimum) value of f (M,U) occurs when g(M,U) reaches its min-
imum (maximum) value. Such extreme values should be found under the restriction given by
(2.1).

For the matrix of order 2 in Eq. (2.3) one may write

g(M,U) = (a + c)2

2
+ C(1 + cos[4(θ − φ)]). (2.19)

Then, the minimum value of g(M,U) in reached when the cosine of 4(θ − φ) equals −1. Such
a minimum is given by

gmin = (a + c)2

2
. (2.20)

From this, one may draw two interesting conclusions. On the one hand, after off-diagonalization,

M
′ = ŨMU has a null diagonal if and only of c = −a. This means that the off-diagonalization

process is not perfect for most matrices. On the other hand, gmin = g(M, I) when (a + c)2/2 =
a2 + c2, that is, c = a. Matrices satisfying this condition are as off-diagonal as they can be

transformed into.

3 JOINT APPROXIMATE DIAGONALIZATION OF SEVERAL MATRICES

When one considers two real symmetric matricesM1 andM2, the existence of a common diago-
nalizing matrix U is equivalent to the conditionM1M2 = M2M1. Hence, several matrices have
a common diagonalizing matrix whenever each pair of them commute.

Tend. Mat. Apl. Comput., 17, N. 1 (2016)
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In the present work, we consider a set of K noncommuting real symmetric matrices M1,M2,

. . . ,MK of order n. Such matrices cannot be diagonalized by the same orthogonal matrix U.
Then, one may look for U leading to the minimum value of

F(U) =
K∑

k=1

f (Mk ,U), (3.1)

where f has the meaning of Eq. (2.2). The minimum is not zero, thus the process can be called
as a joint approximate diagonalization of the matrices under consideration. The optimization
process for an arbitrary value of n requires numerical iterative procedures [18]. Therefore, the
next sections focus on the case n = 2.

4 JOINT APPROXIMATE DIAGONALIZATION OF SEVERAL MATRICES
OF ORDER 2

Similarly to (2.3), the k-th matrix of the set is written as

Mk =
(

ak bk/2

bk/2 ck

)
. (4.1)

Then according to (2.5) and (2.6), one has

f (Mk ,U) = [(ak − ck) sin(2θ) − bk cos(2θ)]2

2
= −Ak cos(4θ) − Bk sin(4θ) + Ck , (4.2)

where

Ak = (ak − ck )
2 − b2

k

4
, Bk = bk(ak − ck )

2
(4.3)

and

Ck = (ak − ck)
2 + b2

k

4
. (4.4)

Comparing with Eq. (2.9), we note that Ck is the amplitude of Mk . In analogy with Eq. (2.8),
one may also write

f (Mk ,U) = Ck (1 − cos[4(θ − φk)]), (4.5)

where

cos(2φk) = ak − ck√
(ak − ck )2 + b2

k

and sin(2φk) = bk√
(ak − ck)2 + b2

k

. (4.6)

The objective function (3.1) is then written as

F(U) = −A cos(4θ) − B sin(4θ) + C, (4.7)

where A = ∑K
k=1 Ak , B = ∑K

k=1 Bk and C = ∑K
k=1 Ck . These parameters may be expressed

in terms of the K -vectors �a = (a1, . . . , aK ), �b = (b1, . . . , bK ) and �c = (c1, . . . , cK ), namely

A = ‖�a − �c‖2 − ‖�b‖2

4
, B = (�a − �c) · �b

2
, and C = ‖�a − �c‖2 + ‖�b‖2

4
. (4.8)

Tend. Mat. Apl. Comput., 17, N. 1 (2016)
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The function F(U) will be the constant value C when A = B = 0, that is,

‖�a − �c‖ = ‖�b‖ and (�a − �c) ⊥ �b. (4.9)

In this case, no matrix U is able to decrease the joint off-diagonal measure of the set of matrices.
In other cases, there is an angle φ such that

F(U) = C −
√

A2 + B2 cos[4(θ − �)], (4.10)

cos(4�) = A√
A2 + B2

and sin(4�) = B√
A2 + B2

. (4.11)

The minimizing values of U are given by

θ = � + qπ

2
, (4.12)

where q is an integer. Moreover, the minimum value of the objective function is

Fmin = C −
√

A2 + B2 ≥ 0. (4.13)

It is worthy noting that all matrices will be diagonalized when Fmin = 0. This occurs when
(�a − �c) ‖ �b, that is, when (a j − c j )bk = (ak − ck )b j for every j and k. Since

M jMk −MkM j = (a j − c j )bk − (ak − ck)b j

2

(
0 1

−1 0

)
, (4.14)

Fmin = 0 when the matrices commute pairwise.

It is also useful to note that, from Eqs. (3.1) and (4.5), the objective function of the joint-
approximate diagonalization may be written as

F(U) =
K∑

k=1

Ck [1 − cos(4φk) cos(4θ) − sin(4φk) sin(4θ)]

=
K∑

k=1

Ck − cos(4θ)

K∑
k=1

Ck cos(4φk) − sin(4θ)

K∑
k=1

Ck sin(4φk)].
(4.15)

5 JOINT APPROXIMATE DIAGONALIZATION OF TWO MATRICES
OF ORDER 2: FOUR CASES

For two matrices M1 and M2, the objective function in Eq. (4.15) is a constant when the ampli-

tudes C1 and C2 satisfy the equations{
C1 cos(4φ1) + C2 cos(4φ2) = 0

C1 sin(4φ1) + C2 sin(4φ2) = 0.
(5.1)

If at least one of the amplitudes is not zero, then the determinant of the system should be zero.
This means sin[4(φ2 − φ1)] = 0, i.e., φ2 − φ1 = pπ

4 , where p is an integer. Moreover, from

Tend. Mat. Apl. Comput., 17, N. 1 (2016)
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Eq. (5.1), the amplitudes should fulfill the condition C1 + (−1)p C2 = 0. Since the amplitudes

are non-negative numbers, one arrives at the following conditions: (i) C1 = C2 and (ii) p should
be an odd integer. Condition (i) means that the matrices have equal amplitudes, while condi-
tion (ii) states that the eigenvectors of M1 are off-diagonalizing vectors of M2, and conversely.

For short, it will be said that two matrices obeying condition (ii) are partially complementary.
Furthermore, when (i) and (ii) are satisfied, the matrices may be told as fully complementary,
because in such a case the objective function is a constant.

In the following subsections, the four cases which differ in whether the matrices are partially

complementary or have different amplitudes are illustrated and discussed.

5.1 Non partially complementary matrices of different amplitudes

In this subsection we consider the matrices

M1 =
(

2 1
1 1

)
and M2 =

(
0 1
1 2

)
(5.2)

with amplitudes 5
4 and 2. They are not partially complementary because (a1 − c1)(a2 − c2) +

b1b2 = 2 �= 0. The main directions of these matrices are displayed as dashed and dotted lines in

Figure 1.

Figure 1: The directions of the columns of the minimizing matrix U(θ) in solid lines, and the
main directions of the matrices M1 and M2, in dashed and dotted lines. The matrices, given by

Eq. (5.2), are not partially complementary and have different amplitudes.

In this case, according to Eqs. (4.11) and (4.12), the minimizing values of θ are given by θ =
1
4 arctan(4

3 ) − π
4 + qπ

2 , with integer q . The corresponding directions are shown as solid lines in

Figure 1. They are contained in the smallest angles formed by the main directions ofM1 andM2.
Moreover, they are closer to the directions of the matrix with larger amplitude, namelyM2. This
is also apparent in Figure 2, where the objective function F(U) is displayed as a function of θ .

The objective functions f (M1,U) and f (M2,U) of the separate diagonalization of the matrices
are also shown. It is seen that the minimization procedure has lowered the value of the objective
function from its initial value F(I) = 4 to its minimum value Fmin = 2.

Tend. Mat. Apl. Comput., 17, N. 1 (2016)
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0 Π
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Θ

f�
�
�

Figure 2: For the matrices of Figure 1, the objective function F(U), in solid line, and the func-
tions f (M1,U) e f (M2,U), in dashed and dotted lines.

5.2 Non partially complementary matrices of equal amplitudes

Now we consider the matrices

M1 =
(

2 1

1 1

)
and M2 =

(
1 1

1 2

)
, (5.3)

whose amplitudes equal 5
4 . The matrices are not partially complementary, in fact, (a1 − c1)

(a2 − c2) + b1b2 = 3 �= 0.

Figure 3: The directions of the columns of the minimizing matrix U(θ) in solid lines, and the

main directions of the matrices M1 and M2, in dashed and dotted lines. The matrices, given by
Eq. (5.3), are not partially complementary and have equal amplitudes.

In this case, the minimizing angles are θ = π
4 + qπ

2 , where q is an integer. In Figure 3, the

solid lines given by such directions are bisectrices of the the smaller angles defined by the main
directions ofM1 andM2. This is clearly shown in Figure 4, where the objective functions F(U),
f (M1,U) and f (M2,U) are given as a function of the angle θ .

Tend. Mat. Apl. Comput., 17, N. 1 (2016)
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0 Π
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Θ
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�

Figure 4: For the matrices of Figure 3, the objective function F(U), in solid line, and the func-
tions f (M1,U) e f (M2,U), in dashed and dotted lines.

5.3 Partially complementary matrices with different amplitudes

It is also interesting to consider the matrices

M1 =
(

2 1

1 1

)
and M2 =

(
2 1

1 6

)
, (5.4)

which have amplitudes 5
4 and 5. The matrices are partially complementary, since (a1 − c1)

(a2 − c2) + b1b2 = 0. The angles θ = −1
4 arctan(4

3 ) + qπ
2 , where q is an integer, minimize the

objective function F(U).

Figure 5: The directions of the columns of the minimizing matrix U(θ) in solid lines, and the

main directions of the matrices M1 and M2, in dashed and dotted lines. The matrices, given by
Eq. (5.4), are partially complementary and have different amplitudes.

In this case, as shown in Figure 5, the minimizing directions coincide with the main directions of
the matrix having larger amplitude, namely M2. Figure 6 displays the objective functions F(U),
f (M1,U) and f (M2,U) as a function of θ . One may note that the latter two functions oscillate

Tend. Mat. Apl. Comput., 17, N. 1 (2016)
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in complete out of phase, that is, the angles producing the maximum value for one matrix yield

the minimum value for the other. Therefore, the term of larger amplitude is dominant in the sum
F(U).

0 Π
4

Π
2

0

2

4

6

8

10

Θ

f�
�
�

Figure 6: For the matrices of Figure 5, the objective function F(U), in solid line, and the func-

tions f (M1,U) e f (M2,U), in dashed and dotted lines.

5.4 Fully complementary matrices

Finally, we consider the matrices

M1 =
(

2 1
1 1

)
and M2 =

(
1 1

2
1
2 3

)
, (5.5)

whose amplitudes equal 5
4 . Since these matrices are partially complementary, that is, (a1 − c1)

(a2 − c2) + b1b2 = 0, and have equal amplitudes, they are fully complementary.

This is the case where the objective function F(U) remains constant, as displayed in Figure 7.

Therefore, one is not able to decrease the joint off-diagonal measure of the pair of matrices.
Since no special value of θ exist, a figure similar to Figures 1, 3 and 5 would not be meaningful
in this case.

6 CONCLUSIONS

We have dealt with the problem of joint approximate diagonalization of a set of symmetric real
matrices. The problem has been reduced to the search for the orthogonal transformation matrix
that minimizes the joint off-diagonal sums of squares of the matrices.

Analytical expressions have been given for the case of a set of matrices of order 2. For the par-

ticular case of two matrices, the discussions were performed after introducing the concept of off-
diagonalizing vectors. The latter are the columns of an orthogonal matrix that off-diagonalizes a
given matrix. When the eigenvectors of one of the matrices are off-diagonalizing vectors of the

Tend. Mat. Apl. Comput., 17, N. 1 (2016)
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0 Π
4
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2

0.0
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1.0

1.5

2.0
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Θ
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�
�

Figure 7: The objective function F(U), in solid line, and the functions f (M1,U) e f (M2,U), in

dashed and dotted lines. The matrices, given by Eq. (5.5), are fully complementary.

other, we say that the matrices are partially complementary. Moreover, the sum of the squared

off-diagonal entries of a transformed matrix oscillates harmonically, as a function of the rotation
angle. The amplitude of the oscillation is one fourth of the squared difference between the eigen-
values of the matrix. The results and discussions are presented for several cases, differing on

whether the matrices are partially complementary and/or have equal amplitudes. The case where
both situations apply deserves special attention because the joint approximate diagonalization
has no effect, in other words, the objective function is constant. We say that such matrices are

fully complementary.

We note that the joint approximate diagonalization is often applied to large matrices, and the
numerical and computational aspects have been the main focus of precedent works. In contrast,
our thorough discussion of matrices of order 2 has shed light on the geometrical meaning of the

procedure. The introduction of the concepts of off-diagonalizing vectors, matrix amplitude and
complementary matrices have been very useful and should find additional applications in Linear
Algebra and other branches of science. Hopefully, the work will encourage the treatment of both

complex and high-order matrices.
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RESUMO. Este trabalho aborda o problema da diagonalização conjunta aproximada de uma

coleção de matrizes reais e simétricas. A otimização é realizada com a restrição de que a ma-

triz de transformação de semelhança seja ortogonal. As soluções são apresentadas de forma

analı́tica para matrizes de ordem 2. São introduzidos os conceitos de vetor anti-diagonalizan-

te, amplitude de uma matriz, que é expressa em termos dos autovalores, e matrizes parcial-

mente complementares. Isto permite fazer uma interpretação geométrica da diagonalização
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conjunta aproximada, em termos dos autovetores e dos vetores anti-diagonalizantes das

matrizes. Esta contribuição deve auxiliar na melhoria de procedimentos numéricos e com-

putacionais envolvendo matrizes de ordem maior que 2.

Palavras-chave: diagonalização conjunta aproximada, autovetores, otimização.
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