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ABSTRACT. Chaotic sequences are sequences generated by chaotic maps. A particle moving in a one-
dimensional space has its behavior modeled according to the time-independent Schrödinger equation. The
tight-binding approximation enables the use of chaotic sequences as the simulation of quantum potentials
in the discretized version of the Schrödinger equation. The present work consists of the generation and
characterization of spectral curves and eigenvectors of the Schrödinger operator with potentials generated
by chaotic sequences, as well as their comparison with the curves generated by periodic, almost periodic
and random sequences. This comparison is made by calculating in each case the inverse participation ratio
as a function of the system size.
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1 INTRODUCTION

One possible way of generating one-dimensional quasi-crystals is the ordering of the atoms
in a crystalline lattice by using iteration rules. Some examples of these rules generate Fibo-
nacci, paper-folding, and Thue-Morse sequences, among others (here called almost periodic se-

quences) [1, 2]. Although these quasi-crystals are constructed with ordering made from well-
defined rules, they do not have a finite period. Because of this fact, they appear as intermediate
systems between the periodic and the disordered crystalline structures.

From Bloch Theorem [3], it is known that for periodic potentials the eigensolutions of the

Schrödinger operator can be chosen to have periodic absolute values, which enable the particle
to move through the entire length of the crystal lattice, leading to good conductors of electricity,
heat, etc. On the other hand, and concerning only one-dimensional systems as will be the case
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here, Anderson Theorem [4] guarantees that disordered potentials confine the particle in finite

regions of the lattice, suggesting bad conductors or insulators.

The canonical treatment of the insulator-conductor problem in Solid State Theory uses the tight-
binding approximation, where it is assumed that the potential created by the lattice is con-
centrated in the regions close to the atoms, being negligible in the regions between them [3].

With this approach, one way of solving the one-dimensional time-independent Schrödinger
equation takes the tight-binding model of numerical simulation. This in turn considers that an
electron moves in a one-dimensional lattice in which each site is occupied by an atom that cre-

ates a potential. To this end, sequences of numbers are used to simulate the potential energy for
each site.

It is proposed here [5] a new type of sequences, also determined by iteration rules but without
definite period, generated from iteration maps more commonly studied in Chaos Theory [6]

(hereafter called chaotic sequences).

The present work aims at characterizing the spectrum and eigenfunctions of the one-dimensional
Schrödinger operator with potentials generated from chaotic maps. This characterization will
be performed by using the definition of the Inverse Participation Ratio [7]. Shortly written, this

number provides an estimate of the site contributions to the composition of the wave function
and, therefore, gives a measure of its distribution over the lattice. In this context, this characteri-
zation should not be taken as a way to determine the spectral type of the Schrödinger operator for

the various potentials, but rather as an illustration of the properties shown by the chaotic cases as
compared with the others. Nevertheless, such a simple characterization could, we believe, give
indications of the possible spectral types.

2 METHODOLOGY

In one dimension, the Schrödinger equation is given in the following form:

− �
2

2m
· ∂

2�(x, t)

∂x2
+ U (x)�(x, t) = i�

∂�(x, t)

∂t

where:

– � = h
2π (h is the Planck’s constant);

– m is the particle mass;

– t is time;

– x is the position of the particle at time t ;

– U (x) is the potential the particle is subject to at position x ;

– i = √−1;

– � is the (complex) wave function.

Tend. Mat. Apl. Comput., 15, N. 2 (2014)
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To solve the Schrödinger equation, one can use the method of separation of variables. This

method assumes that the function �(x, t) can be written as the product of two others, a time-
dependent one and a time-independent other.

�(x, t) = ψ(x) · τ(t)

In this way, two equations are obtained:

1. Time-dependent equation: dτ (t)
dt = E

i� τ(t)whose solution is given by τ(t) = Ae
−Et
i� where

A is a constant to be determined and E is the particle’s energy.

2. Time-independent equation:− �
2

2m · ∂2�(x,t)
∂x2 + U (x)�(x, t) = Eψ(x). The solution of this

equation depends on the potential to which the particle is subject at the position x : U (x).

In the discrete tight-binding solution method, periodic, aperiodic, and random sequences were
used to obtain the solutions of the discretized one-dimensional time-independent Schrödinger
equation. We call aperiodic sequences those sequences formed from iteration rules but without

finite period, comprising here both almost periodic and chaotic sequences.

Our almost periodic sequences are constructed from substitution rules. As an example, consider
a sequence of terms a and b, generated by the following rule: a → ab and b → a. Thus,
the sequence is being built as follows: a → ab → aba → abaab → abaababa → · · · ,

and successively. This sequence is known as the Fibonacci sequence. Besides this Fibonacci
sequence, we took in this work the almost periodic sequences named in the literature as Thue-
Morse, period-doubling, Rudin-Shapiro, and paper-folding [1, 2] .

The chaotic sequences are obtained from chaotic maps. These maps form sequences iteratively,

starting from a chosen initial value. Below, we can observe the formation law for the logistic
map:

wn+1 = rwn(1 − wn),

where r ∈ [0, 4] is a parameter to be defined and n is the position of the term in the sequence.

The parameter r is decisive for the sequence to become chaotic: as r goes from 0 to 4, the
behavior of the logistic sequence becomes chaotic through bifurcations, as shown in Figure 1.

To study the properties of solutions of the Schrödinger operator under chaotic potentials, we
sought to raise two important aspects of chaotic maps, which could influence the behavior of

those solutions: (i) it is observed that there are different routes to chaos [6]. (ii) the degree of
chaoticity can be modified (perhaps in a controlled way) by varying the parameter of the chaotic
map. In order to address these issues, we considered also the chaotic maps known as tent map

and Gaussian map [6].

One possible method of characterization of the eigenvectors is based on the decay law of |ψ |2
as a function of the distance on the lattice taken from its maximum value. In the extreme peri-
odic case, |ψ |2 does not decay in a definite way. In the random case, the phenomenon of local-
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Figure 1: Bifurcation diagram for the logistic map.

ization of |ψ |2 is characterized by an exponential decay e−γ |x−x0 | with respect to a center x0.

The intermediate critical cases are given by an algebraic decay of the type |x − x0|−α.

As an alternative to the characterization based on the decay law of |ψ |2, we chose to characterize
the eigenstates by the decay of the Inverse Participation Ratio (I P R), a tool closer to Solid
State Theory and widely used in studies of the transition localization-delocalization in Anderson

models [7]. That quantity is defined for a given wave function as

I P R (N) =

N∑
i=1

|ψi |4
(

N∑
i=1

|ψi |2
)2

where ψi = ψ(xi ) is the value of the wave function at site i. Defined in this way, this number

reflects the contribution of each site to the composition of the wave function and, therefore, its
distribution over the lattice.

The algorithm used to numerically solve the Schrödinger equation in the tight-binding method
calls as input the sequence to be used and the size of the tridiagonal square matrix related with

the problem. From that, it calculates the diagonal matrix of eigenvalues and the eigenvectors
associated with each point of the spectrum.

A second algorithm was developed to generate a sequence of IPR’s for matrices of increasing
sizes N , thereby obtaining an IPR(N) curve. For this curve, a fitting was made in order to obtain

its decay law and to analyze it. For the chaotic and random sequences, we chose to analyze the
mean curve of IPR sequences, since the behavior of these curves varied with the portion of the
sequence used in the tight-binding model.

The following results were obtained by using mean curves constructed from 40 different portions

of the sequences used. The curve fitting was done using MATLAB’s resources.

Tend. Mat. Apl. Comput., 15, N. 2 (2014)
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3 RESULTS

It is known [7] that for periodic sequences the curve generated by IPR(N) must decay as 1
N for

large enough sizes N and hence tend to zero. As for the cases of curves generated by random

sequences it should stabilize at a constant value k > 0. The curves obtained with these two
sequences were used as references in the comparison with almost periodic and chaotic sequences,
providing in this way a classification with respect to the extreme periodic and random cases

known in the literature.

For all curves two fittings were attempted: the first one was exponential and the second one was
algebraic. These fittings were suggested by the types of decay characteristic of localized and
critical states. From the outset, the exponential fit of the type ae−bx + c was discarded since it

presented a low degree of reliability for some sequences. The algebraic fit, in turn, was divided
into two types: an algebraic fit of the type axb + c and a rational algebraic fit of the type ax+b

x+d .
Note that both admit a behavior of the type 1/x for fitting parameters b ≈ −1 in the first case

and a ≈ 0 in the second one. Comparing the reliability shown by these two types of algebraic
fittings, it can be said that, in general, the algebraic fit of the type axb +c was the most indicated.

In this way, one could obtain the classification table shown in Figure 2.

4 CONCLUSION

In general, one can see that the logistic map with parameter r = 3.6 is the chaotic map whose

behavior is closer to the periodic sequence, while the Gaussian map and logistic map with param-
eter r = 4.0 compete for better approximating the random sequence. Concerning only logistic
maps, as we go deeper into the chaotic region, the behavior tends to be closer to the random case.

The sequences Fibonacci, period-doubling, Thue-Morse, and logistic map with parameter r =
3.6 always positioned themselves close to the periodic sequence, while the Gaussian map, the
logistic map with parameter r = 4.0, and paper-foldind sequence were closer to the random
sequence.

A relevant result was the paper-folding sequence to show behavior close to the random one, a
result generically opposite to that showed in the characterization method using |ψ |2. Moreover,
it was also observed that with the logistic map the degree of chaoticity can be controlled. This
fact could allows the sequence to be adapted to the specific needs of different physical problems.

Therefore, we can conclude that the chaotic sequences can also be used as a way to create the
sequenced potentials. It is possible to observe that the chaotic maps enable the generation of
curves with characteristics similar to those generated by random or periodic sequences. This

suggests materials which are insulators and good conductors, respectively.

In this way, we believe that the chaotic maps may, in parallel with almost periodic sequences,
contribute to the study of ordering the atoms and, consequently, to the study of the quasi-crystals
and to the engineering of new materials.

Tend. Mat. Apl. Comput., 15, N. 2 (2014)
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RESUMO. Sequências caóticas são sequências geradas por mapas caóticos. Uma partı́cula

num espaço unidimensional tem seu comportamento modelado segundo a equação de Schrö-

dinger independente do tempo. A aproximação tight-binding possibilita a utilização de se-

quências caóticas como simulação de potenciais quânticos na versão discretizada da equação

de Schrödinger. O presente trabalho consiste na geração e caracterização de curvas espectrais

e de autovetores do operador de Schrödinger sob potenciais gerados por sequências caóticas,

bem como sua comparação com as curvas geradas por sequências periódica, peneperiódicas

e aleatória. Esta comparação é feita calculando-se em cada caso o Inverso do Número de

Participação como função do tamanho do sistema.

Palavras-chave: inverso do número de participação, equação de Schrödinger, sequências

caóticas.

REFERENCES
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