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ABSTRACT. We study and analyze a nonmonotone globally convergent method for minimization on
closed sets. This method is based on the ideas from trust-region and Levenberg-Marquardt methods. Thus,
the subproblems consists in minimizing a quadratic model of the objective function subject to a given con-
straint set. We incorporate concepts of bidiagonalization and calculation of the SVD “with inaccuracy” to
improve the performance of the algorithm, since the solution of the subproblem by traditional techniques,
which is required in each iteration, is computationally expensive. Other feasible methods are mentioned,
including a curvilinear search algorithm and a minimization along geodesics algorithm. Finally, we illus-
trate the numerical performance of the methods when applied to the Orthogonal Procrustes Problem.

Keywords: orthogonality constraints, nonmonotone algorithm, Orthogonal Procrustes Problem, Spectral
Projected Gradient Method.

1 INTRODUCTION

In this paper, we consider the Weighted Orthogonal Procrustes Problem (WOPP). Then, given
X ∈ R

m×n , A ∈ R
p×m , B ∈ R

p×q and C ∈ R
n×q , we address the following constrained

optimization problem:
min 1

2 ||AXC − B||2F
s.t . X T X = I

. (1)

We also consider the problem when the objective function of (1) is replaced by 1
2 ||AX − B||2F ,

called here as Orthogonal Procrustes Problem (OPP).

The Procrustes Problem belongs to the class of minimization problems restricted to the set of
matrices with orthonormal columns, which often appear in important classes of optimization
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84 SPECTRAL PROJECTED GRADIENT METHOD FOR THE PROCRUSTES PROBLEM

problems and, as well as the linear and quadratic constraints, has a special structure to be ex-
plored. As an example, we mention applications in body rigid movements [23], psychometry
[17], multidimensional scaling [9] and Global Positioning System [4].

However, compute its solution is a costly task. In most cases, a solution is possible only compu-
tationally through an iterative method capable of dealing with non-stationary points and convex
constraints, generating a sequence of feasible points converging to a local minimizer. Generate
this feasible sequence carries a high computational cost, because it involves matrix reorthogonal-
ization or generate points along geodesics. In the first case, some decomposition of the matrix,
usually Singular Value Decomposition (SVD), is needed, and the second one is related to expo-
nential of matrix or solving partial differential equations. Moreover, generally, these problems
are classified as NP-hard. Recently it was proposed a free SVD and geodesic method that is very
promising in terms of reduced computational time [24]. In the algorithms section we will talk
more about these methods.

The aim of this study is to numerically compare the performance of these methods and improve
the performance of the algorithm proposed in [13]. For this purpose we incorporate an alternative
approach for calculating the SVD and a bidiagonalization strategy. With the first, our goal is to
reduce the computational effort involved in this process, and with the second, we aim to solve a
smaller problem, equivalent to the original.

This paper is organized as follows. In Section 2 we present the optimality conditions of the
Procrustes Problem. In Section 3 we comment the methods studied. Section 4 is dedicated to the
numerical results. Finally, the conclusions are commented in the last section.

Notation: The gradient of f will be denoted by g and the Hessian matrix by H , that is, g(X)i j =
∂ f

∂Xi j
(X) and H (X)i j,kl = ∂2 f

∂Xi j ∂Xkl
(X). Given A ∈ Rn×n , tr(A) means the trace of matrix A,

and R(A) denote the column space of A.

2 THE ORTHOGONAL PROCRUSTES PROBLEM

The Procrustes Problem aims at analyzing the process of preserving a transformation to a set of
forms. This process involves rotation and scaling in a certain data set, in order to move them to a
common frame of reference where they can be compared. The known data are arranged in arrays
and the rotation transformation to be determined is a matrix with orthonormal columns.

According to Elden & Park [11], the OPP problem with m = n is said to be balanced and the
case where n < m is called unbalanced. For the balanced case, we have a closed formula for
the solution, namely X∗ = U V T , where AT B = U�V T is the reduced SVD decomposition of
AT B. For unbalanced OPP and the WOPP cases, the solution is found through iterative methods,
and therefore is not necessarily the global minimum.

Let f : Rm×n → R defined as f (X) = 1
2 ||AXC − B||2F and h : Rm×n → R

n×n , m � n,
defined by h(X) = X T X − I , and consider � = {X ∈ Rm×n : h(X) = 0}.
Note that f is a function of class C2 and g(X) = AT (AXC − B)CT ∈ R

m×n . Furthermore,
as the Frobenius norm ||X ||F = √

n, ∀X ∈ �, it follows that � is compact and g is Lipschitz
continuous at �.

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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The next theorem provides equivalent conditions for a matrix X ∈ � to be a stationary point of

the problem (1), which greatly simplifies the verification of stationary point.

Theorem 1. Let X ∈ �. Then X satisfies the KKT Conditions of (1) if, and only if, g(X) ∈ R(X)

and X T g(X) is a symmetric matrix.

Proof. Note that the Lagrangian function of (1) is

l(X, �) = f (X) + tr(�(X T X − I )),

where � ∈ R
n×n contains the Lagrange multipliers of the problem. It follows that the KKT

Conditions of (1) are:

g(X) + X (� + �T ) = 0 and X T X = I. (2)

Assume that X satisfies (2). Then g(X) = −X (� + �T ), i.e., g(X) ∈ R(X). Furthermore,
as X X T is the projection matrix on R(X), so X T g(X) = −(� + �T ). Therefore, X T g(X) is
symmetric.

Now, considers that g(X) ∈ R(X) and X T g(X) is symmetric. Define � = − X T g(X )
2 , so g(X)+

X (� + �T ) = 0, i.e., X satisfies (2). �

3 ALGORITHMS

The current section presents a special case of minimization in closed sets method proposed in
[13] and briefly describe the methods of minimization along geodesic [1] and curvilinear search

[24].

3.1 Spectral Projected Gradient Method

The algorithm of [13] is based on trust region methods [20] and on the ideas of the Levenberg-
Marquardt method [21], generating new iterates through the minimization of a quadratic model

of the function around the current iterate. We will apply a particular case of this method to solve
the problem (1).

Consider the constants 0 < σmin < σmax < ∞, Lu � L f
1, for each k = 0, 1, 2 . . ., choose

σ k
spc ∈ [σmin, σmax], and set

σ k
ρ =

⎧⎨
⎩

σ k
spc

2
, se 0 < ρ < Lu

Lu, otherwise
, (3)

where, ρ > 0 is a regularization parameter.

1 L f is the Lipschitz constant associated with the gradient of f

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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Thus, the quadratic model Qk
ρ : Rm×n → R is given by:

Qk
ρ(X) = tr(g(Xk)

T (X − Xk)) + σ k
ρ + ρ

2
||X − Xk||2F .

For the parameter σ k
spc let us choose, whenever possible, the Barzilai-Borwein parameter [3].

Thus, for two consecutive iterates, Xk−1 and Xk , it follows that

σ k
bb = tr((g(Xk)

T − g(Xk−1)
T )(Xk − Xk−1))

||Xk − Xk−1||2F
,

and define

σ k
spc =

{
1, for k = 0

min{max{σ k
bb, σmin}, σmax}, for k � 1

. (4)

With these choices, the algorithm studied is a variation of the Nonmonotone Spectral Projected
Gradient Method [5] for minimization with orthogonal constraints, and the solution of the sub-

problem
min Qk

ρ(X)

s.t . X T X = I

X ∈ Rm×n

is X∗ = U V T , where U�V T is the reduced SVD decomposition of the matrix

Wk = Xk − 1

ρ + σ k
ρ

g(Xk).

We mention that the nonmonotonic line search is based on that devised in [15] and is presented
in the following definition.

Definition 1. Let {xk}k∈N a sequence defined by xk+1 = xk + tkdk , dk �= 0, tk ∈ (0, 1),
γ ∈ (0, 1), M ∈ Z

+ e m(0) = 0. For each k � 1, choose m(k) recursively by 0 � m(k) �
min{m(k − 1) + 1, M}, and set f (xl(k)) = max{ f (xk− j ) : 0 � j � m(k)}. We say that xk+1

satisfies Nonmonotone Armijo condition if f (xk+1) � f (xl(k)) + γ tk∇ f (xk)
T dk .

Thus, we can now establish the algorithm for the problem (1).

The following theorem ensures the global convergence of the iterates sequence to stationary
points and its proof can be found in [13].

Theorem 2. Let X be an accumulation point of the sequence generated by Algorithm 1. Then X

is a stationary point of the problem (1), which is not a point of local maximum. In addition, if the
set of stationary points of the problem is finite, then the sequence converges.

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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Algorithm 1: Projected Gradient for minimization on Stiefel manifolds (PGST).

Let X0 ∈ �, M ∈ Z+, η ∈ (0, 1], β1 ∈ (0, 1
2 ], 0 < σmin < σmax < ∞ and

1 < ξ1 � ξ2 < ∞.

Set k = 0 and m(0) = 0.

Step 1. Compute g(Xk), f (Xl(k)) and set ρ = σ k
spc
2 as (4);

Step 2. Set σ k
ρ defined in (3) and compute the reduced SVD of Wk : Wk =

U�V T ;

Step 3. Define X
k
ρ = U V T and find X k

ρ ∈ � such that Qk
ρ(X k

ρ) �
ηQk

ρ(X
k
ρ). If Qk

ρ(X k
ρ) = 0, declare Xk stationary point;

Step 4. Define

k(X) = tr(g(Xk)
T (X − Xk)) + σ k

ρ

2 ||X − Xk||2F .

If

f (X k
ρ) � f (Xl(k)) + β1k(X k

ρ),

define ρk = ρ, Xk+1 = X k
ρ , set k = k + 1 and return to Step 1.

Else, choose ρnew ∈ [ξ1ρ, ξ2ρ], set ρ = ρnew and return to Step 2.

3.2 Minimization method through geodesic

The minimization method through geodesic [1] is a modification of Newton’s method for mini-

mization in Stiefel and Grassmann manifolds that takes advantage of those geometries. In prob-
lems of unconstrained minimization, Newton’s method consists of generating new iterates by
subtracting of the current iteration a multiple of the vector H−1∇ f , where H is the Hessian ma-

trix of the function f evaluated on the current iterate. Arias, Edelman and Smith [1] replaced this
subtraction restricting the function along a geodesic path in the manifold. The gradient remained
as usual (tangent to the surface of restrictions), while the Hessian matrix is obtained from the

second differential of the function restricted to geodesic.

Let FX X (�1, �2) = ∑
i j,kl H (X)i j,kl (�1)i j (�2)kl , where �1, �2 ∈ R

m×n , and FX X (�) the
single tangent vector which satisfies

FX X (�, Z ) = 〈FX X (�), Z 〉, ∀Z ∈ Rm×n.

We present bellow, in general terms, the algorithm of [1], to be referred throughout this paper by
sg min. For more details see [1, 10].

In the experiments presented ahead we use the dogleg option of the package sg min2 in order to
adjust the parameter of the linear search along the geodesic. In this case, instead of t = 1, we
obtain a parameter tk in (5) such that f (X (tk)) < f (X).

2The solver used is available in http://web.mit.edu/∼ ripper/www/sgmin.html (accessed in 29/01/2012)

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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Algorithm 2: Newton method for minimization on Stiefel manifolds (sg min).

Let X ∈ �.

Step 1. Compute G = g(X) − Xg(X)T X .

Step 2. Find � such that (X T �)T = −X T � and

FX X (�) − Xskew(g(X)T �) − skew(�g(X)T ) − 1
2��X T g(X) = −G

where skew(X) = X−X T

2 and � = I − X X T .

Step 3. Move from X to X (1) in direction � using the geodesic formula

X (t) = X M(t) + QN(t), (5)

where Q comes from reduced QR decomposition of (I − X X T )�, M(t)
and N(t) are matrices given by the equation(

M(t)

N(t)

)
= exp t

(
X T � −RT

R 0

)(
In

0

)
,

and return to Step 1.

3.3 Curvilinear search method

The method developed by [24] is a curvilinear search method over a manifold, which constructs
a sequence of feasible iterates Xk as it follows: for each k ∈ N, set

Wk = g(Xk)X T
k − Xkg(Xk)

T (6)

and

Xk+1 = Y (tk) =
(

I + tk
2

Wk

)−1 (
I − tk

2
Wk

)
Xk .

The step of the linear search under the curve Y is defined by the Barzilai-Borwein parameter
[3]. To ensure global convergence of the method, Wen and Yin [24] adopted the strategy of
nonmonotony of Zhang & Hager [26].

In the experiments we used the solver3 based on Algorithm 2 of [24]. Below we present the
algorithm that, throughout this paper, will be referred OptStiefel.

4 COMPUTATIONAL EXPERIMENTS

Below, we present each problem and we comment the obtained results when comparing the

algorithms.

3The solver used is available in http://optman.blogs.rice.edu/ (accessed in 29/01/2012)

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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Algorithm 3: Curvilinear search method whith Barzilai-Borwein (OptStiefel).

Let X0 ∈ �, t0 > 0, 0 < tm < tM , ρ1, δ, η, ε ∈ (0, 1).

Set k = 0.

Step 1. Compute f (Xk), g(Xk) and define Wk as (6). If ||g(Xk)|| < ε,
stop. Else, go to the next step.

Step 2. Compute f (Y (tk )). While f (Y (tk )) � Ck + ρ1tk〈g(Xk), Wk Xk〉,
set tk = δtk.

Step 3. Define Xk+1 = Y (tk), qk+1 = ηqk+1, Ck+1 = ηqkCk + f (Xk+1)

qk+1
.

Choose tk+1 = max{min{tk+1, tM }, tm}, set k = k + 1 and return to Step 1.

4.1 Numerical experiments and problems

The experiments were performed using Matlab 7.10 on a intel CORE i3-2310M processor, CPU
2.10 GHz with 400 Gb of HD and 4 Gb of Ram. The following values for the constants of
Algorithm 1 are used: β1 = 10−4, ξ1 = ξ2 = 5, σmin = 10−10, Lu = L f , σmax = Lu and

M = 7. It is worth emphasizing that the above parameters were selected after a sequence of
tests. This selection was focused in the parameters that, on average, showed the best results.
For the others methods we used the default parameters presents in the authors’ implementations

solvers.

We assume convergence when X T
k g(Xk) is symmetric and

||g(Xk) − Xk(X T
k g(Xk))||F � 10−6,

limiting the execution time (TMAX) into 600 seconds.

For the numerical experiments we consider n = q , p = m, A = PS RT and C = Q�QT ,

with P and R random orthogonal matrices, Q ∈ Rn×n Householder matrix, � ∈ Rn×n diagonal
with elements uniformly distributed in the interval [ 1

2 , 2] and S diagonal defined for each type of
problem. As a starting point X0 we generate a random matrix satisfying X0 ∈ �. All random
values were generated with the randn function of Matlab.

Against the exact solution of the problem, we create a known solution Q∗ ∈ R
m×n (a randon

Householder matrix) by taking B = AQ∗C, and thus to monitor the behavior of iterates Xk .

The tested problems were taken from [25] and are described below.

Problem 1. The diagonal elements of S are generated by a normal distribution in the interval
[10, 12].

Problem 2. The diagonal of S is given by Sii = i+2ri , where ri are random numbers uniformly
distributed in the interval [0, 1].

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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Problem 3. Each diagonal element of S is generated as follows: Sii = 1 + 99(i−1)
m+1 + 2ri , with

ri uniformly distributed in the interval [0, 1].
In the following tables, we denote the number of iterations by Ni , the number of function eval-
uations by Ne, the residual ||AXkC − B||2F , the norm of the error in the solution ||Xk − Q∗||2F
and the time (in seconds). For these values we show the minimal (min), maximum (max) end the

average (mean) of the results achieved from ten simulations.

First of all, we will test the efficiency of the nonmonotone line search. Note that the matrix A
in Problem 1, that contains very near singular values, is well conditioned. Therefore, the use of
nonmonotony can not present a significant reduction in the number of linear search, as seen in

Table 1. For matrices of Problems 2 and 3, the singular values of A become more distant from
each other as m increases, leaving the matrix ill-conditioned. For these problems, the strategy of
nonmonotony shows its potential as can be seen in Table 1 and Figure 1.

Table 1: A comparative between the monotone and nonmonotone case of PGST method.

Problem 1, m = 500 Problem 2, m = 100 Problem 3, m = 100

q = 20 q = 70 q = 10 q = 50 q=10 q=50

Ni Ne Ni Ne Ni Ne Ni Ne Ni Ne Ni Ne

M = 0

min 18 24 20 26 602 970 736 1203 475 766 747 1238

mean 21 29 22 29 903 1488 1029 1695 755 1243 1013 1675

max 23 32 24 33 1517 2544 1564 2597 1171 1966 1395 2348

M = 7

min 17 22 19 24 489 661 557 743 558 763 597 806

mean 19 24 20 24 790 1092 1043 1449 817 1129 940 1298

max 20 25 21 25 994 1394 1716 2425 1078 1499 1409 1958
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Figure 1: Behavior of PGST algorithm for Problem 2 with m = 50 and q = 10. The y-axis is on a

logarithmic scale.

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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Table 2 presents the results achieved for the problems. We can see that for well conditioned

problems, PGST and OptStiefel algorithms showed similar performance, but in the presence of
ill conditioning, the OptStiefel method shows a significant reduction from required values for
convergence in comparison with other methods. In all cases examined, the method sg min had a

performance inferior to the others, and, in some situations, reached the maximum time allowed.

Table 2: Performance of the methods.

Problem 1 with m = 500 and q = 70 Problem 1 with m = 1000 and q = 100

Method Ni Ne Time Residual Error Ni Ne Time Residual Error

PGST

min 19 24 0.842 5.53e-09 3.31e-10 20 25 3.853 8.74e-09 6.82e-10

mean 20 24 1.056 2.02e-08 1.41e-09 20 25 4.277 1.93e-08 1.43e-09

max 21 25 1.700 3.31e-08 2.62e-09 21 26 6.084 3.71e-08 3.01e-09

OptStiefel

min 30 30 0.982 8.42e-09 6.05e-10 30 30 4.165 4.82e-09 2.54e-10

mean 31 31 1.160 1.89e-08 1.33e-09 31 31 4.901 2.19e-08 1.64e-09

max 34 34 1.372 3.47e-08 2.84e-09 33 33 5.272 3.75e-08 2.96e-09

sg min

min 30 122 33.00 2.06e-08 1.53e-09 30 122 157.4 1.68e-08 1.28e-09

mean 31 127 36.75 2.55e-08 1.88e-09 31 127 174.9 2.55e-08 1.88e-09

max 32 130 40.31 3.16e-08 2.41e-09 32 130 197.3 3.46e-08 2.67e-09

Problem 2 with m = 100 and q = 50 Problem 2 with m = 500 and q = 20

PGST

min 557 743 4.695 4.02e-09 7.03e-10 7709 11212 87.09 1.00e-07 2.06e-08

mean 1043 1449 11.16 1.12e-07 3.29e-08 11723 16972 153.3 1.27e-07 3.33e-08

max 1716 2425 21.88 1.85e-07 7.12e-08 16780 24295 223.5 1.53e-07 4.74e-08

OptStiefel

min 435 453 1.700 3.41e-08 8.07e-09 1638 1722 14.38 1.74e-06 3.35e-07

mean 559 591 2.280 1.19e-07 3.37e-08 2176 2285 20.57 7.32e-06 1.93e-06

max 838 881 3.244 1.92e-07 5.75e-08 3008 3145 30.15 1.27e-05 3.91e-06

sg min med — — TMAX — — — — TMAX — —

Problem 3 with m = 500 and q = 20 Problem 3 with m = 1000 and q = 10

PGST

min 780 1082 8.221 5.15e-08 1.91e-08 781 1055 31.27 7.58e-08 3.19e-08

mean 1150 1621 14.55 1.39e-07 5.21e-08 1457 2065 40.23 1.81e-07 7.83e-08

max 2385 3434 25.13 2.73e-07 1.57e-07 2092 3042 55.39 2.50e-07 1.29e-07

OptStiefel

min 422 448 3.432 1.33e-07 4.21e-08 610 641 10.85 5.30e-07 1.76e-07

mean 529 564 4.517 3.19e-07 1.16e-07 781 819 15.98 9.36e-07 3.52e-07

max 732 764 6.942 5.93e-07 2.58e-07 1052 1092 20.99 1.46e-06 4.55e-07

sg min mean — — TMAX — — — — TMAX — —

4.1.1 Using the Inexact SVD

Seeking to reduce the computational effort required to calculate the SVD in Algorithm 1, we
propose to find this decomposition by an alternative algorithm [7], which builds recursively
the SVD through calculation of the left and right dominant singular subspaces of dimension k,

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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(k � n). This technique is appropriate for matrices where the number of rows is much larger

than the number of columns.

The process begins with the QR decomposition of Ak , the matrix formed by the first k columns
of A, which will be written in the form Ak Vk = Qk Rk , with Vk = Ik . Then we proceed to update
this decomposition, excluding the singular vector associated with the smallest singular value of

the matrix of order m×(k+ i) considered and adding the next column of A to be analyzed. Thus,
all columns of A are considered, generating only the singular vectors associated with the largest
singular values of A. For more information about the method, including error analysis, see [7].

Table 3 displays the time, in seconds, spent by Algorithm 1 in its original form and when it uses

the alternative SVD, the latter is referred to SISVD. For the cases q = 5 and q = 10 there is not
a significant reduction, because the proportion between m and q is not enough to take advantage
of the properties of the method. However, for q = 1 we notice an improvement of 44%, on

average, in performance.

Table 3: Comparative between PGST, SISVD and OptStiefel methods for problems 1, 2 and 3.

Problem 1 Problem 2 Problem 3

m = 5000 m = 500 m = 3000

q = 1 q = 5 q = 10 q = 1 q = 5 q = 10 q = 1 q = 5 q = 10

PGST

min 1.076 4.290 6.037 8.299 21.20 31.69 39.31 132.1 192.1

mean 1.301 5.745 7.126 13.50 52.18 106.6 66.30 212.4 297.9

max 2.215 2.215 9.594 22.65 131.4 225.8 101.8 286.5 487.7

SISVD

min 0.592 4.258 5.709 4.664 21.57 45.22 19.34 129.0 190.6

mean 0.809 5.589 7.781 7.477 49.76 105.7 37.18 207.7 293.7

max 1.372 6.692 10.29 10.20 113.2 266.6 75.28 274.1 504.3

OptStiefel

min 0.811 4.633 5.912 2.246 4.914 7.550 20.45 67.90 84.00

mean 1.054 6.108 7.296 4.871 8.966 14.03 26.57 92.68 118.3

max 1.513 9.781 9.157 8.080 12.26 28.70 46.12 119.4 152.6

4.1.2 Using Golub-Kahan Bidiagonalization

With the purpose to solve large problems, we consider the problem OPP with q = 1 and in-
corporate to Algorithm 1 the process of Golub-Kahan bidiagonalization presented in [22]. This
process is based on the Lanczos algorithm for tridiagonalizing a symmetric matrix [19] and in
Golub and Kahan bidiagonalization process [14]. In this case, we project the problem into a

subspace, obtaining an equivalent problem, but with smaller dimension.

The Lanczos method consists of generating, from a symmetric matrix A ∈ Rn×n and a vector
b ∈ R

n , sequences of vectors {vk} and of scalars {αk} and {βk }, such that A is reduced to
tridiagonal form, that is, V T AV = T with T ∈ R

n×n tridiagonal and V ∈ R
n×n , satisfying

Tend. Mat. Apl. Comput., 15, N. 1 (2014)
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V T V = I . In turn, the Golub-Kahan bidiagonalization process applies the Lanczos process at a

particular symmetrical system, namely(
I A

AT −λ2 I

)(
b − Ax

x

)
=
(

b

0

)
,

where λ ∈ R.

So, after k steps of the Golub-Kahan algorithm we have AVk = Uk+1 Bk and AT Uk+1 = Vk Bk +
αk+1vk+1eT

k+1, where Bk ∈ R
k+1×k is bidiagonal, Uk = [u1, u2, . . . , uk] ∈ R

m×k and Vk =
[v1, v2, . . . , vk] ∈ Rn×k , satisfies U T

k+1Uk+1 = I and V T
k Vk = I .

Setting x = Vk y, we have ||Ax − b||F = ||Bk y − U T
k+1b||F, with y = V T

k x ∈ Rk . Moreover,
yT y = 1 if, and only if, xT x = 1. Thus,

min ||Ax − b||F

s.t . ||x|| = 1

x ∈ span{V 1
k , . . . , V k

k },

where V i
k is the ith-column of Vk, is equivalent to

min ||Bk y − U T
k+1b||F

s.t . ||y|| = 1.
(7)

Then we apply the Algorithm 1 to problem (7), whose dimension is smaller than the size of the
original problem. We will do the tests for matrices of Problem 1. The tests for the problems 2 and
3 were omitted, once the bidiagonalization process has not reduced the size of these problems,

due to the fact that they are ill-conditioned.

The Algorithm 1 with the bidiagonalization process will be called SGKB. In Table 4 we expose
the results obtained by applying SGKB, where the DSP is the size of the projected subspace,
given by the number of iterations of the bidiagonalization process. The SGKB method showed

promising results, since few steps of the bidiagonalization process were necessary and, there-
fore, the reduction in the size of the problem was significant. Additionally, the method quickly
converges to a point very close to the solution.

5 CONCLUSIONS

We present a method to solve the Orthogonal Procrustes Problem with global convergence to
stationary points. In order to verify the theoretical results and analyze the performance of the
presented algorithm, we apply it in some particular cases of WOPP. The results were promising

for the cases analyzed, in terms of reduced computational time, as compared with that obtained
by usual methods. Therefore, the algorithm studied can be considered competitive when com-
pared to methods already consolidated.
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Table 4: Comparative between PGST and SGKB methods for OPP case of Problem 1.

m = 2000 m = 3000

Method Ni Ne Time Residual Error DSP Ni Ne Time Residual Error DSP

PGST

min 9 13 0.171 6.29e-09 5.28e-10 — 8 12 0.405 7.83e-09 6.58e-10 —

mean 9 13 0.209 1.60e-08 1.35e-09 — 9 13 0.449 1.99e-08 1.71e-09 —

max 9 13 0.218 2.90e-08 2.43e-09 — 9 13 0.546 3.93e-08 3.29e-09 —

SGKB

min 49 86 0.156 1.20e-08 1.01e-09 7 51 85 0.312 9.12e-09 8.99e-10 7

mean 58 97 0.254 2.88e-08 2.58e-09 7 58 97 0.400 2.26e-08 2.10e-09 8

max 67 110 0.358 4.20e-08 3.69e-09 8 64 107 0.530 3.15e-08 2.87e-09 8

m = 4000 m = 5000

PGST

min 9 13 0.670 5.90e-09 5.00e-10 — 8 12 0.967 5.87e-09 4.93e-10 —

mean 9 13 0.726 1.21e-08 1.01e-09 — 8 13 1.282 2.06e-08 1.87e-09 –

max 9 13 0.764 2.02e-08 1.70e-09 — 9 13 1.903 4.28e-08 3.99e-09 —

SGKB

min 52 86 0.530 1.57e-08 1.34e-09 7 52 86 0.717 1.36e-08 1.18e-09 7

mean 57 95 0.606 2.22e-08 1.99e-09 7 56 93 0.928 2.70e-08 2.51e-09 7

max 67 110 0.733 4.40e-08 3.93e-09 8 65 108 1.528 4.38e-08 4.06e-09 8

At the algorithm we incorporated bidiagonalization ideas and calculating the SVD in a alterna-

tively way, which represented a significant improvement in performance when used for least-
squares problems, or problems in which the number of rows of the matrix is much greater than
the number of columns, respectively.

Additionally, we finalize this work by saying that the same approach here presented can be

employed to minimize functionals over the symmetric matrices set. In that case, the ideas given
in [16] for symmetric Procrustes Problems can be used to solve the subproblems that appear at
Step 2 of Algorithm 1.
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RESUMO. Estudamos e analisamos um método globalmente convergente e não monótono

para minimização em conjuntos fechados. Este método está baseado nas ideias dos métodos

de região de confiança e Levenberg-Marquardt. Dessa maneira, os subproblemas consistem

em minimizar um modelo quadrático da função objetivo sujeito a um conjunto de restrições.

Incorporamos conceitos de bidiagonalização e de cálculo da SVD de maneira “inexata” bus-

cando melhorar o desempenho do algoritmo, visto que a solução do subproblema por técnicas
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tradicionais, necessária em cada iteração, é computacionalmente muito cara. Outros métodos

viáveis são citados, entre eles um método de busca curvilinear e um de minimização ao longo

de geodésicas. Finalmente, ilustramos o desempenho numérico dos métodos quando aplica-

dos ao Problema de Procrustes Ortogonal.

Palavras-chave: restrições de ortogonalidade, algoritmo não monótono, Método do Gradi-

ente Projetado Espectral, Problema de Procrustes Ortogonal.
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