Submetido para TEMA

Additional constraints to ensure three vanishing
moments for orthonormal wavelet filter banks
and transient detection

Abstract. This article presents an improvement to the formulation of Sherlock
and Monro for the wavelet parameterization for the obtainment of the restrictions
which ensure three vanishing moments. In order to test the formulation presented,
a transient signal detection is presented.
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1. Introduction

Sherlock and Monro [7] started the study of the angular parameterization of
orthonormal filter banks, adapting the work of [9] on the factorization of paraunitary
matrices and parameterizing the space of orthonormal wavelets by a set of angular
parameters.

Initially the formulation had a weak point, there were no restrictions to ensure
a number of vanishing moments greater than one. Additional restrictions to ensure
at least two vanishing moments were obtained by [5]. This article is an extension of
[8] that presents an improvement to the formulation of [7], in order to ensure a third
vanishing moment for wavelet filter banks, additional constraints are presented to
the work of [5] and [7]. An application of this formulation with three vanishing
moments for transient detection is presented in this paper.

Let
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be the transfer functions of the lowpass and highpass filters, respectively, for an
orthonormal filter bank with length-2/V, where
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2. First and second vanishing moments

If the filter bank is to characterize a wavelet transform, the regularity condition
G (2)|.=1 = 0 must be satisfied |1, 4]. Which, according to [5], leads to
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ay = - ; ;. (2.1)
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According to [4], to ensure two vanishing moments it is necessary that 7
2

0. This provides, [5],
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3. The Third Vanishing Moment

In order to obtain a third vanishing moment, [§8], it is necessary that

LENE)| (3.1)
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Replacing (1.1) in the second derivative of G™)(2) when z = 1 and writing

conveniently becomes
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Lemma 3.1. Considering (1.2), the following equalities are true
N—1 N
Z h;ﬁv) = cos [Z al] , (3.3)
=0 1=1
N—1 N
hgi\Ql = sin [Z ail (3.4)
=0 i=1
Proof. Proof by induction:
In the case that N =1, to (3.3) and (3.4), respectively, it has
hél) = cos(ay) and hgl) = sin(ay).
Demonstrate that if
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a) Demonstrate that the validity of (3.5) and (3.6) implies the validity of (3.7):
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b) Demonstrate that the validity of (3.5) and (3.6) implies the validity of (3.8):
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Lemma 3.2. The equations in (1.2) imply

N-1T k N-1 N-1 k N
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Proof. For N =1 the verification of the validity of (3.9) and (3.10) is immediate.
For N > 1 show that if
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Demonstrate that the validity of (3.11) implies the validity of (3.12):
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From Lemma 3.1 it follows that
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of (3.13) implies the validity of (3.14):
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From Lemma 3.1 it follows that
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From the lemmas 3.1 and 3.2 it follows that (3.2) can be written as
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i =(N—j)+1
k+j

5716720‘172 Z Ay,

1=k+1

1<j<N-lel<k<N-1



© SBMAC TEMA 7

From equation (2.1), equation (3.16) has the following implications:

i N 71' K+

172 Z aieﬂjvk:ZfZZai.
i=(N—j)+1 i=k+1

Leading to some properties:

(N2 +2N —1)cos B — (N? — 1)sin 8 = 2Ncos£,

N N N
cos % -2 4 Z a; | +sin % -2 ' Z a; | = 2cos % cos |2 4 Z a; |,
i=(N—j)+1 i=(N—j)+1 i=(N—j)+1
. k+j - k+j T k+j
cos l4 —Q'Z ozi‘| — sin [4 —2.2 Oéi] :2coszsin [QZ ai] ,
i=k-+1 1=k+1 i=k+1
- N - N N
cos 1 2 ' Z ;| = cos 1 cos |2 ' Z o; | +sin |2 | Z Qa;
i=(N—j)+1 i=(N—j)+1 i=(N—j)+1

Using these properties, equation (3.15-3.16) can be written as:

N-1

T T
S — + 2cos (cosAj +sin\;) + 2(2N — 1) cos — cos A\j p+
- " ;{ J+sing) + 22N~ 1)cos T o, |
7 . = N- N—j—1
=1 Z { Z (4 coszsm )\k) }
j=1 k=1
(3.17)
N k+j
where \; = |2 Z a;| e A = [2 Z all
i=(N—j)+1 i=k+1
Applying (3.1) in (3.17)
N-1 N-2 , N—j—1
0 = N+ Z {sin)\j +2Ncos>\j} + Z { Z (2sin Ag) }, (3.18)
j=1 j=1 k=1

Then (3.18) should be written in terms of ay_q, firstly rewriting (3.18),
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Decomposing the second parcel of (3.19) gives
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and following the reasoning
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1 N-1 oy N-3 , N—j—1 N N-1
aN,2:§arcsin —Z{Zsin)\j—l—Ncos)\j}—Z{ Z sin)\k}—Q — ;.
j=1 j=1 k=1 i=2,i£N—2

Equation (3.20) ensures the third vanishing moment, but the equation (3.20) has a
real solution if the angles a; satisfy the condition

N N-1 N-3
—1-— 5 < {sm)\ + N cos A }Jr {
1

Jj=1

N—j—1

Jj—
N

> Sm/\k} <1-7. (321

k=1

Jj=

4. Transient detection of a signal

Consider a orthonormal filter bank with length-8 (N = 4), which initial con-
figuration characterizes a wavelet with at least one vanishing moment, op—1 =
{-17.38°,16.83°, —45.10°,90.65°}. To ensure two vanishing moments complies (2.2)
resulting in a,—0 = {—17.38°,16.83°,3.12°,42.43°}. To ensure at least three vanis-
hing moments apply (3.20) which leads to cyp—g = {—17.38°, —47.23°,93.44°,16.17°}.
Figure 1 shows the functions ¢ (t): ap=1, ap=2 and a,=3, respectively. Each wavelet
has the sampling frequency which is denoted by wy = 27/T's.
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Figure 1: On the left: op—1, ap=2 and ap=3. On the right: the sampling frequency
of each wavelet.

Let f(t) be the signal shown in Figure 2,

2 it 0<t<377

t
_ ] Gt—o000
() ?et) if 377 <t < 995

0.3683 if 995 <t <1200.
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Figure 2: Signal f(¢).

This signal has two transients (discontinuities) and was analyzed using a,=1,
ap=2 and ayp—3, according to figures 3, 4 and 5. Each figure shows the decomposition

of the first and second wavelet levels, respectively.
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Figure 5: Analysis of f(t) with ap—3 in the first and second level of decomposition.
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Comparing the figures 3, 4 and 5 it is noticed that despite of the good identifi-
cation of transients using «,—o, the analysis with a,—3 also provides a good result,
now for ay,—; the detection is not quite clear. The amplitude of the detail coeffi-
cients, besides the transients that appear in the first decomposition level with aj—a,
decrease in the case of a,—3.The presence of high frequency coefficients indicates
that the transients are slightly more highlighted when the analysis is done using
Oéng.

There are other formulations to work with wavelet filter banks, for example,
[10], but the formulation of Sherlock and Monro stands for the mathematical and
computational simplicities. However, initially there were no constraints to ensure a
number of vanishing moments greater than one. An extension of this formulation
introducing restrictions to ensure two vanishing moments was done by [5]. In [§]
the constraints to ensure at least three vanishing moments were presented.

Several papers on applications using this formulation before the extension for
three vanishing moments have been published, some examples are, such as pattern
recognition [2], linear estimation [3], and signal compression [6].

5. Conclusions

This paper presented the constraints that ensure three vanishing moments and
also demonstrations and calculations for obtaining the same. T also presents a brief
application of the formulation for transient detection in signals, a comparative way
between wavelets with different regularities.

In this paper, an application example was used to test the three different wavelets
of Sherlock and Monro. Through this example it was noticed that those wavelets are
efficient in transient detection, specially when regularity is of at least two vanishing
moments. In the case that the parameterization satisfies at least three vanishing
moments it was obtained a good identification of transients and better compression
or the regular parts of the signal. This fact supports the idea that the more regular
is the wavelet the better is the compression of the regular parts of the signal to be
decomposed.
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