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1. Introdution

This work orresponds to the talk [6℄, given by J. C. S. Sampaio, during the XXXIV

CNMAC - XXXIV Congresso Naional de Matemátia Apliada e Computaional

- September, 17-21 2012, Águas de Lindóia-SP, Brasil, where it was presented and

disussed some reent results [5℄ with respet to how to obtain onservation laws

for an equation without a lassial Lagrangian.

It is well known that for equations arising from the Euler-Lagrange equations,

the elebrated Noether theorem provides an elegant way for �nding onserved quan-

tities for suh equation, see [1, 17, 20℄. However, when it is onsidered equations

without variational struture, it is impossible to apply Noether's approah. Then

the following question arises: how an one �nd a onserved vetor for an equation

without Lagrangians?

Aross the last entury, many approahes have been proposed in order to over-

ame this problem. The interested reader is direted to the referene [19℄, where

some of these developments were disussed. In this paper we use the most reent

approah proposed in [12℄, where it was shown a general result onneting sym-

metries and onservation laws, in order to �nd onserved vetors for the general

equation

ut + αuux + βu2ux + γuxxx + µuxxxxx = 0. (1.1)
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Following [2℄, we would like to all this new formulation for �nding onserved

vetors as Ibragimov's theorem on onservation laws.

In this paper it is onsidered the equation (1.1) with the following restritions:

(α, β) 6= (0, 0) and (γ, µ) 6= (0, 0). In fat, in the ase whenever (γ, µ) = (0, 0) it is
obtained a partiular ase of the invisid Burgers equation, whih was onsidered

in [2, 4℄. Whenever α = β = 0 it is obtained a linear equation and here we are

interested in nonlinear phenomena.

Apart from the previous mentioned equations, equation (1.1) inludes

• The elebrated KdV equation

ut + αuux + γuxxx = 0; (1.2)

• General Kawahara equation

ut + αuux + γuxxx + µuxxxxx = 0; (1.3)

• Simpli�ed modi�ed Kawahara equation

ut + βu2ux + µuxxxxx = 0; (1.4)

• Simpli�ed Kawahara equation

ut + αuux + µuxxxxx = 0 (1.5)

and

• Gardner equation

ut + 6(u+ u2)ux + uxxx = 0. (1.6)

All of these equations is oming from the elebrated KdV equation, whih was

dedued by Korteweg and his student de-Vries for modeling shallow wave equations.

These equations are employed in Mathematial Physis in order to desribe a lot

of dispersive phenomena, suh as plasma phenomena, while equations of the type

(1.2) are also used to model the Great Red Spot of Jupiter, see [21℄.

Although our main purpose is to revisit some of our previous results given in

[5, 21℄, in the present work we also present some new onservation laws for equa-

tions of the lass (1.1). Namely, the new onserved vetors derived by using the

developments [12, 15, 16℄ are

C0 = u2,

C1 =
2

3
αu3 + 2µuuxxxx − 2µuxuxxx + µu2

xx,

(1.7)

for the simpli�ed Kawahara equation (1.5), and

C0 = −u− u2,

C1 = 3u4 + 6u3 + 3u2 + 2uuxx + uxx − u2
x,

(1.8)
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for the Gardner equation (1.6).

The remaining of this paper is as the follows. In the next setion we revisit

the Ibragimov's theorem on onservation and the neessary tools to employ it for

�nding loal onserved vetors. Next, in the setion 3, we show that the lass of

equations (1.1) is nonlinearly self-adjoint. This allows us to �nd loal onservation

laws for these equations, whih will be done in the following setions. Some parts

of this review losely follow our referenes [5, 21℄.

2. Ibragimov's theory

In this setion we revisit the basi tools about the reent developments started with

the fruitful work [12℄, where Ibragimov proved a new onservation theorem. Next we

introdue the reent onept of nonlinear self-adjointness, proposed by Ibragimov

in [15, 16℄.

This �eld, nowadays, is a rih branh in the �eld of group analysis and it has

been attrating the attention of a big number of researhers. Many of them are

interested in �nding nonlinearly self-adjoint properties of equations, as it an be

seen in [2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 22℄ and referenes therein.

2.1. Adjoint equations and nonlinear self-adjointness

Let x = (x1, · · · , xn) be n independent variables, u = u(x) be a dependent variable.
The set of kth order derivatives of u is denoted by u(k), where k in a positive integer

number. Consider the set of funtions depending on x, u and u derivatives up to a

�nite order.

A loally analyti funtion of a �nite number of the variables x, u and u deriva-

tives is alled a di�erential funtion. The highest order of derivatives appearing in

the di�erential funtion is alled the order of this funtion. The vetor spae of all

di�erential funtions of �nite order is denoted by A.

The formal sum

δ

δu
=

∂

∂u
+

∞
∑

j=1

(−1)jDi1 · · ·Dij

∂

∂ui1···ij

(2.9)

is the well known Euler-Lagrange operator.

Let F ∈ A be a di�erential funtion. From this funtion we an obtain a

di�erential equation

F (x, u, · · · , u(s)) = 0 (2.10)

and the following new di�erential funtion, alled formal Lagrangian, given by L =
vF , where v = v(x) is another dependent variable.

Equation (2.10) is said to be nonlinearly self-adjoint if the equation obtained

from the adjoint equation

F ∗(x, u, v, · · · , u(s), v(s)) :=
δL

δu
= 0 (2.11)
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by the substitution v = φ(x, u) with a ertain funtion φ(x, u) 6= 0 is idential with

the original equation (2.10), that is,

F ∗(x, u, v, u(1), v(1), · · · , u(s), v(s))
∣

∣

v=φ(x,u)
= 0. (2.12)

Whenever (2.12) holds for a ertain di�erential funtion φ suh that φu 6= 0 and

φx 6= 0, equation (2.11) is alled weak self-adjoint.

In other words: equation (2.11) is said to be nonlinearly self-adjoint if there

exists a funtion φ = φ(x, u) suh that

F ∗|v=φ = λ(x, u, · · ·)F, (2.13)

for some di�erential funtion λ = λ(x, u, · · ·).

2.2. Ibragimov's theorem on onservation laws

The following result was proved in [12℄.

Theorem 2.1 (Ibragimov's theorem on onservation laws). Let

X = ξi
∂

∂xi
+ η

∂

∂u

be any symmetry (Lie point, Lie-Bäklund, nonloal symmetry) of equation (2.10)
and (2.11) be the adjoint equation to equation (2.10). The ombined system (2.10)
and (2.11) has the onservation law DiC

i = 0, where

Ci = ξiL+W

[

∂L

∂ui

−Dj

(

∂L

∂uij

)

+DjDk

∂L

∂uijk

− · · ·

]

+Dj(W )

[

∂L

∂uij

−Dk

(

∂L

∂uijk

)

+ · · ·

]

+DjDk(W )

[

∂L

∂uijk

− · · ·

]

+ · · ·

(2.14)

and W = η − ξiui.

2.3. Algorithm

Ibragimov's theorem on onservation laws an be resumed by the following algo-

rithm (see [12, 2℄ for further details): given a PDE

F = F (x, u, u(1) · · · , u(n)) = 0,

• we onstrut a Lagrangian L = vF .

• From the Euler-Lagrange equations, the following system is obtained:

F (x, u, u(1) · · · , u(n)) = 0, (2.15)

F ∗(x, u, v, · · · , u(s), v(s)) = 0. (2.16)

• We onstrut the onserved vetor given by (2.14).

TEMA Tend. Mat. Apl. Comput., 14, No. 1 (2013), 109-118.

doi: 10.5540/tema.2013.014.01.0109



Review on onservation laws 113

3. Nonlinearly self-adjoint lassi�ation of the equa-

tion (1.1)

The following theorem was proved in [5℄ (see also [21℄).

Theorem 3.2. Equation (1.1), with (γ, µ) 6= 0 and (α, β) 6= (0, 0), is nonlinearly

self-adjoint.

Remarks: Equation (1.1) is also nonlinearly self-adjoint without the requested

hypothesis in the Theorem 3.2. The mentioned hypothesis only re�ets the non-

linearity of the equation and the fat that we are onsidering dispersive equations.

However, a straightforward alulation shows that we an remove them. We leave

the details to the interested reader. It an also be useful, one going in this diretion,

to see [2, 3, 4℄.

Proof. Let us denote the left side of (1.1) by

F = ut + αuux + γuxxx + µuxxxxx. (3.17)

Then, the adjoint equation to F = 0 is

F ∗ := −vt − (αu + βu2)vx − γvxxx − µvxxxxx = 0. (3.18)

Now we only must analyze the following two ases. Below, a1, a2 and a3 are arbi-

trary onstants.

• Assume β = 0 in (1.1). Then the substitution

φ(x, t, u) = a1(x− αtu) + a2u+ a3

in (3.18) makes the adjoint equation equivalent to the original equation.

• Now suppose β 6= 0 in (1.1). Substituting φ(x, t, u) = a1u+ a2 instead of v in

(3.18), we obtain a multiple of (1.1).

This proves our statement.

4. Non-loal onservation laws

Here we �nd nonloal onservation laws for the equation (1.1). We follow the

algorithm previously disussed in Setion 2.3.

Atually, the �rst two steps of suh a mentioned algorithm have just been done

beause the formal Lagrangian had already been obtained while the adjoint equation

to (1.1) had also already been alulated and it is given by (3.18).
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With respet to the seond step, the omponents of the vetor are given by

C0 = τL+Wv,

C1 = ξL+W
[

v(αu + βu2) + γvxx + µvxxxx
]

−Dx(W )(γvx + µvxxx) +D2
x(W )(γv + µvxx)

−D3
x(W )(µvx) +D4

x(W )(µv),

(4.19)

where L = vF , W = η − τut − ξux and

X = τ(x, t, u)
∂

∂t
+ ξ(x, t, u)

∂

∂x
+ η(x, t, u)

∂

∂u

is any Lie point symmetry of (1.1).

The obtained onserved vetor depends on v beause it is a onserved vetor to

the system







ut + αuux + βu2ux + γuxxx + µuxxxxx = 0,

−vt − (αu+ βu2)vx − γvxxx − µvxxxxx = 0.

Suh a onserved vetor C = (C0, C1) is, then, a nonloal onserved vetor.

5. Loal onservation laws

Aording to Ibragimov's theorem on onservation laws (see also the orresponding

algorithm), a onserved vetor to (1.1) and (3.18) is C = (C0, C1), whose the

omponents are given by (4.19) and, as it was already pointed out, a nonloal

onserved vetor to the original equation.

In order to �nd loal onserved vetors, we use the Lie point symmetries found

in [18, 21℄ and the fat that under the substitutions given by Theorem 3.2, the

nonloal onserved vetors beome a loal onserved vetor. We illustrate this fat

at the same time that we proeed our alulation for establishing the �elds (1.7)

and (1.8).

5.1. Conservation law for the simpli�ed Kawahara equation

Conerning the simpli�ed Kawahara equation (1.5), by using the dilational symme-

try

X = x
∂

∂x
+ 5t

∂

∂t
− 4u

∂

∂u
(5.20)

TEMA Tend. Mat. Apl. Comput., 14, No. 1 (2013), 109-118.

doi: 10.5540/tema.2013.014.01.0109



Review on onservation laws 115

found in [18℄, from (4.19) we obtain

C0 = −4vu− xvux + 5αtvuux + 5µtvuxxxxx,

C1 = xvut − 4αvu2 − 4µuvxxxx − µxuxvxxxx − 5αtvuut

−5µtutvxxxx + 5µuxvxxx + µxuxxvxxx + 5µtuxtvxxx

−6µvxxuxx − µxvxxuxxx − 5µtvxxuxxt + 7µvxuxxx

+µxvxuxxxx + 5µtvxuxxxt − 8µvuxxxx − 5µtvuxxxxt.

(5.21)

Substituting v = x− αtu into the omponents above, we arrived at

C0 = −2xu+ αtu2 +Dx

(

−x2u+ 3αxtu2 −
5

3
α2t2u3

)

+Dx

(

5µxtuxxxx − 5µtuxxx − 5αµt2uuxxxx + 5αµt2uxuxxx −
5

2
αµt2u2

xx

)

,

C1 = −αxu2 +
2

3
α2tu3 − 2µxuxxxx + 2µuxxx + 2αµtuuxxxx

−2αµtuxuxxx + αµtu2
xx +Dt

(

x2u− 3αxtu2 +
5

3
α2t2u3

)

Dt

(

−5µxtuxxxx + 5µtuxxx + 5αµt2uuxxxx − 5αµt2uxuxxx +
5

2
αµt2u2

xx

)

One transferred the term Dx(· · ·) from C0
to C1

, we �nd the onserved vetor

C = (C0, C1), where

C0 = −2xu+ αtu2,

C1 = −αxu2 + 2
3α

2tu3 − 2µxuxxxx + 2µuxxx + 2αµtuuxxxx

−2αµtuxuxxx + αµtu2
xx

for the simpli�ed Kahawara equation.

Now, substituting v = u into (5.21), it is obtained

C0 = −4u2 − xuux + 5αtu2ux + 5µtuuxxxxx,

C1 = xuut − 4αu3 − 12µuuxxxx − 5αtu2ut − 5µtutuxxxx + 12µuxuxxx+

5µtuxtuxxx − 6µ(uxx)
2 − 5µtuxxuxxt + 5µtuxuxxxt − 5µtuuxxxxt
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and then,

C0 = −
7

2
u2 +Dx

(

−
xu2

2
+

5

3
αtu3 + 5µtuuxxxx − 5µtuxuxxx +

5

2
µtu2

xx

)

,

C1 = −
7

3
αu3 − 7µuuxxxx + 7µuxuxxx −

7

2
µu2

xx

−Dt

(

−
xu2

2
+

5

3
αtu3 + 5µtuuxxxx − 5µtuxuxxx +

5

2
µtu2

xx

)

.

After a straightforward alulation and multiplying the �nal result by −7/2, it
is obtained the vetor (1.7).

5.2. Conservation law for the Gardner equation

In order to establish the onserved vetor (1.8) for the Gardner equation, we �rst

substitute the omponents of the following Lie point symmetry generator

X3 = (2x+ 6t)
∂

∂x
+ 6t

∂

∂t
− (2u+ 1)

∂

∂u

into the Eq. (4.19) with µ = 0, α = β = 6 and γ = 1. Thus

C0 = −6vt(6u+ 6u2)ux − 6vtuxxx − (2u+ 1)v − (2x+ 6t)vux,

C1 = (2x+ 6t)vut − (2x+ 6t)vuxxx

+(2u+ 1)(6u+ 6u2)v + (2u+ 1)vxx + (2x+ 6t)vxxux

+6t(6u+ 6u2)vut + 6tvxxut − 4vxux − (2x+ 6t)vxuxx

−6tvxuxt + 6vuxx + (2x+ 6t)vuxxx + 6tvuxxt.

(5.22)

Now, setting v = u into (5.22), it is obtained

C0 = −36tu2ux − 36tu3ux − 6tuuxxx − 2u2 − u− 2xuux − 6tuux,

C1 = 2xuut + 6tuut + 18u3 + 12u4 + 6u2 + 2uuxx + uxx + 36tu2ut

+36tu3ut + 6tutuxx − 4(ux)
2 − 6tuxuxt + 6uuxx + 6tuuxxt,

whih are equivalent to

C0 = −u− u2 −Dx(xu
2 + 3tu2 + 6tuuxx − 3t(ux)

2 + 9tu4 + 12tu3),

C1 = 3u4 + 6u3 + 3u2 + 2uuxx + uxx − (ux)
2

+Dt(xu
2 + 3tu2 + 6tuuxx − 3t(ux)

2 + 9tu4 + 12tu3).

Then, after rekoning, we get the vetor �eld (1.8).
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6. Conlusion

In this review paper we have revisited some reent results onneting Lie symme-

tries and onservation laws for equations not neessarily being from Euler-Lagrange

equations. Moreover, we have illustrated our disussion with some new onservation

laws obtained via Ibragimov's approah. Suh onservation laws are established, at

least using suh a new development, for the �rst time in the present review.

The interested reader an found more loal onservation laws for equations of

the type (1.1), where we established onservation laws for the general Kawahara

equation (1.3) and modi�ed Kawahara equation (1.5). Moreover, some onservation

laws for the KdV equation an also be established using those obtained results, see

also [16℄. More reently, some new lasses of evolution equations up to �fth order

have been disovered, see [7℄.

Resumo. Neste trabalho revisitamos alguns resultados reentes sobre leis de on-

servação de uma lasse de equações evolutivas até quinta ordem.

Palavras-have. Teorema de Ibragimov, leis de onservação, equações KdV de

quinta ordem.
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