Produto Funcional de Grafos

A. R. G. Lozano¹, Departamento de Matemática da FFP-UERJ. Escola de Ciências, Educação, Letras, Artes e Humanidades da UNIGRANRIO, Grupo de Pesquisa em Matemática Discreta e Computacional.

- A. S. Siqueira², Escola de Ciências, Educação, Letras, Artes e Humanidades da UNIGRANRIO, Grupo de Pesquisa em Matemática Discreta e Computacional.
- S. Jurkiewicz³, Programa de Engenharia da Produção da COPPE-UFRJ.
- C. V. P. Friedmann⁴, Departamento de Matemática da FFP-UERJ. Grupo de Pesquisa em Matemática Discreta e Computacional.

Resumo. O trabalho apresenta uma generalização do produto cartesiano de grafos que denominamos de produto funcional de grafos. Provam-se algumas propriedades do novo produto e mostra-se uma aplicação do mesmo, que consiste em gerar grafos regulares que admitem coloração com folga Δ com $\Delta+1$ cores.

Palavras-chave. Produto funcional de grafos, Coloração com folga, Grafo suporte.

1. Introdução

Em 2008 Lozano, Jurkiewicz e Friedmann [9] apresentaram um algoritmo para troca completa de informações que não dependia da topologia da rede. Para isto, usaram a coloração total equilibrada dos grafos correspondentes às topologias mais comuns e mostraram que tais colorações satisfaziam a Conjectura de Vizing, ou seja, os grafos podiam ser coloridos totalmente com, no máximo, $\Delta+2$ cores. Posteriormente Lozano, Siqueira e Jurkiewicz [13] provaram que, se um grafo regular pode ser colorido com folga Δ com $\Delta+1$ cores então a coloração de vértices pode ser completada obtendo-se uma coloração total equilibrada com, no máximo, $\Delta+2$ cores. O resultado acima citado serviu como motivação para estudar a possibilidade de se construir famílias de grafos regulares com as características mencionadas. Para auxiliar nesta construção, introduziu-se o conceito de produto funcional de grafos e suas propriedades, que são explorados na terceira seção deste artigo. Em seguida apresentamos uma das maneiras de obter estas famílias de grafos regulares usando

 $^{^1}$ arglozano@terra.com.br

²asiqueira@unigranrio.com.br

³jurki@pep.ufrj.br

⁴cliciavp@terra.com.br

o produto funcional, e finalizamos com uma seção onde são expostas as perspectivas de trabalhos futuros. Neste texto, os grafos são simples, não orientados e sem laços.

2. Definições básicas e notações

Ao longo do artigo serão usadas as notações listadas a seguir:

- $\{u,v\}$ ou uv denota uma aresta do grafo G, onde u e v são adjacentes;
- $d_G(v)$ ou d(v) se não houver ambiguidade, denota o grau do vértice v no grafo G;
- $\Delta(G)$ ou Δ se não houver ambiguidade, denota o grau máximo do grafo G;
- $N_G(v)$ ou N(v) se não houver ambiguidade, denota o conjunto de os todos vértices adjacentes ao vértice v no grafo G;
- F(X) denota o conjunto de todas as bijeções de X em X;
- D(G) denota o digrafo obtido pela substituição de cada aresta uv do grafo G pelos arcos (u, v) e (v, u), mantendo o mesmo conjunto de vértices;
- \bullet \mathcal{D} denota o conjunto dos digrafos que satisfazem as seguintes condições:
 - 1. (u, v) é um arco do digrafo se, e somente se, (v, u) também é um arco do digrafo,
 - 2. Não existem dois arcos iguais.
- Se $\overrightarrow{G} \in \mathcal{D}$, $G(\overrightarrow{G})$ denota o grafo obtido pela substituição de cada par de arcos (u, v) e (v, u) de \overrightarrow{G} pela aresta uv, mantendo o mesmo conjunto de vétices;
- I_n denota o conjunto de números naturais $\{0, 1, 2, 3, 4, ..., n-1\}$;
- Se A é um conjunto, |A| denota a cardinalidade de A;
- E(X) ou E se n\(\tilde{a}\) o houver ambiguidade, denota o conjunto de arestas (arcos) do grafo (digrafo) X;
- V(X) ou V se não houver ambiguidade, denota o conjunto de vértices do grafo (digrafo) X ;
- C_n denota o ciclo de n vértices;
- K_n denota o grafo completo de n vértices.

Definição 2.1. [3] Sejam um grafo G(V, E), um conjunto $S \subset (E \cup V)$, um número natural k e um conjunto arbitrário $C = \{c_1, c_2, \cdots, c_k\}$ cujos elementos são denominados de cores. Uma **coloração** do grafo G com as cores de C é uma aplicação $f: S \to C$.

Na definição acima, se S=V então tem-se uma **coloração de vértices**. No caso de S=E, trata-se de uma **coloração de arestas** e finalmente, se $S=E\cup V$, então f é uma **coloração total**. Se $x\in S$ e $f(x)=c_i,\ i\in\{1,2,\cdots,k\}$, diz-se que x possui ou está colorido com a cor c_i .

Definição 2.2. [3] Sejam um grafo G(V, E), um conjunto $S \subset (E \cup V)$ e um conjunto de cores $C = \{c_1, c_2, ..., c_k\}$, onde k é um número natural. Uma coloração $f: S \to C$ do grafo G com as cores de C é uma **coloração própria**, se para todo par $x, y \in S$ tem-se que, se x é adjacente ou incidente a y então $f(x) \neq f(y)$.

Deste ponto em diante, todas as colorações neste trabalho serão consideradas próprias e sobrejetivas, a menos que explicitamente se especifique o contrário.

Definição 2.3. [16] Dados um grafo G(V, E), um conjunto $S \subset (E \cup V)$ e um conjunto de cores $C = \{c_1, c_2, ..., c_k\}$, onde k é um número natural. Uma coloração $f: S \to C$ do grafo G com as cores de C é uma coloração equilibrada, se para todo par $i, j \in \{1, 2, \cdots, k\}$ tem-se que, $||f^{-1}(c_i)| - |f^{-1}(c_j)|| \le 1$, sendo $|f^{-1}(c_i)|$ e $|f^{-1}(c_j)|$ as cardinalidades dos conjuntos dos elementos de S que possuem as cores c_i e c_j , respectivamente.

Definição 2.4. [5] Sejam um grafo G(V, E), um conjunto de cores $C = \{c_1, c_2, ..., c_k\}$, onde k é um número natural, e um número natural p, tal que $p \le \Delta(G)$. Uma aplicação $f: S \to C$ é uma **coloração de vértices** do grafo G com as cores de G **com folga** G0, se para todo G0 tem-se que se G0 então G0, caso contrário, G0, consecue G1, sendo G2, sendo G3, cardinalidade do conjunto das cores da vizinhança de G3.

Definição 2.5. [16] Um grafo G é de **classe 1** se admite uma coloração própria de arestas com $\Delta(G)$ cores, caso contrário é de **classe 2**.

3. Produto funcional de grafos

Nesta seção é apresentada a definição de produto funcional de grafos, para este fim, é necessário definir aplicações, denominadas aplicações de ligação, que associam cada aresta de um fator com uma bijeção definida no conjunto de vértices do outro. Esta bijeção indica como será feita a ligação dos vértices do grafo produto. O produto cartesiano de grafos pode ser visto como um produto funcional, onde a todas as arestas são associadas à aplicação identidade correspondente.

Definição 3.1. Os digrafos $\overrightarrow{G}_1(V_1, E_1)$ e $\overrightarrow{G}_2(V_2, E_2)$ são ditos funcionalmente ligados pelas aplicações $f_1: E_1 \to F(V_2)$ e $f_2: E_2 \to F(V_1)$ se f_1 e f_2 são tais que:

- 1. Se para todo arco $(u, v) \in E_1$ se $(v, u) \in E_1$, então $f_1((u, v)) = (f_1((v, u)))^{-1}$
- 2. Se para todo $(x,y) \in E_2$ se $(y,x) \in E_2$, então $f_2((x,y)) = (f_2((y,x)))^{-1}$

3. Para todo par de arcos $(u, v) \in E_1$ e $(x, y) \in E_2$, tem-se que $f_2((x, y))(u) \neq v$ ou $f_1((u, v))(x) \neq y$

As aplicações f_1 e f_2 são denominadas **aplicações de ligação**.

Definição 3.2. Sejam dois grafos $G_1(V_1, E_1)$ e $G_2(V_2, E_2)$. Se $D(G_1)$ e $D(G_2)$ são funcionalmente ligados pelas aplicações $f_1 : E(D(G_1)) \to F(V_2)$ e $f_2 : E(D(G_2)) \to F(V_1)$, então os **grafos** $G_1(V_1, E_1)$ e $G_2(V_2, E_2)$ são ditos **funcionalmente ligados** pelas mesmas aplicações.

Definição 3.3. Sejam $\overrightarrow{G}_1(V_1, E_1)$ e $\overrightarrow{G}_2(V_2, E_2)$ digrafos funcionalmente ligados pelas aplicações $f_1: E_1 \to F(V_2)$ e $f_2: E_2 \to F(V_1)$. O produto funcional do digrafo \overrightarrow{G}_1 pelo digrafo \overrightarrow{G}_2 segundo as aplicações f_1 e f_2 , denotado por $(\overrightarrow{G}_1, f_1) \times (\overrightarrow{G}_2, f_2)$, é o digrafo $\overrightarrow{G}^*(V^*, E^*)$ definido por:

- $\bullet \ V^* = V_1 \times V_2.$
- $((u,x),(v,y)) \in E^*$ se, e somente se, uma das seguintes condições for verdadeira:
 - 1. $(u,v) \in E_1 \ e \ f_1((u,v))(x) = y$
 - 2. $(x,y) \in E_2$ e $f_2((x,y))(u) = v$.

A Figura 1 apresenta dois digrafos com suas respectivas aplicações de ligação e o digrafo obtido como resultado do produto de ambos os pares.

Definição 3.4. Sejam $G_1(V_1, E_1)$ e $G_2(V_2, E_2)$ grafos funcionalmente ligados pelas aplicações $f_1: E(D(G_1)) \to F(V_2)$ e $f_2: E(D(G_2)) \to F(V_1)$. O produto funcional do grafo G_1 pelo grafo G_2 , denotado por $(G_1, f_1) \times (G_2, f_2)$, é o grafo $G(\overline{G}^*(V^*, E^*))$, sendo $\overline{G}^*(V^*, E^*) = (D(G_1), f_1) \times (D(G_2), f_2)$.

É interessante notar que o Produto Cartesiano de Grafos é um caso particular do Produto Funcional de Grafos definido acima, quando f_1 e f_2 atribuem a identidade a todos os arcos dos digrafos correspondentes. A seguir será definido um tipo especial de bijeção, denominado rotação.

Definição 3.5. Dado um número natural n, uma **rotação em** I_n é uma bijeção $f: I_n \to I_n$ definida como segue:

 $f(i) = (i + k) \pmod{n}$, onde o número natural k é constante.

Definição 3.6. Sejam n um número natural e A um conjunto finito tal que |A| = n. Uma bijeção $f: A \to A$ \acute{e} uma **rotação em** A, se existem, uma bijeção $h: I_n \to A$ e uma rotação r em I_n tais que f(h(i)) = h(r(i)), para todo $i \in I_n$.

Observe que, na definição acima, se h(i) é representado por x_i , tem-se que $f(h(i)) = h(r(i)) = x_{r(i)}$. Isso significa que para conhecer a rotação, basta conhecer o valor em x_0 . Neste texto $r_i(A)$ denotará a rotação em A tal que r(h(0)) = h(i).

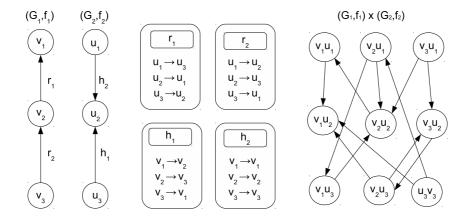


Figura 1: Produto funcional de dois digrafos

Se não existir ambiguidade, tal rotação será representada simplesmente por r_i .

A Figura 2 representa o produto funcional do caminho P_3 por ele mesmo, associado a duas diferentes aplicações de ligação (as rotações r_1 e r_2). Na figura, cada vértice da forma (v_i, v_j) é representado por $v_i v_j$ e as linhas descontínuas descrevem as arestas do produto cartesiano usual de grafos.

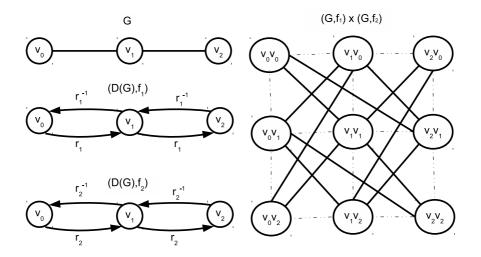


Figura 2: Produto funcional de dois grafos

Os teoremas a seguir mostram algumas proriedades do produto funcional.

Teorema 3.1. Sejam $G_1(V_1, E_1)$ e $G_2(V_2, E_2)$ grafos funcionalmente ligados pelas aplicações $f_1: E(D(G_1)) \to F(V_2)$ e $f_2: E(D(G_2)) \to F(V_1)$. Então os grafos $G^*(V^*, E^*) = (G_1, f_1) \times (G_2, f_2)$ e $G^{**}(V^{**}, E^{**}) = (G_2, f_2) \times (G_1, f_1)$ são isomorfos. Neste sentido, o produto funcional de grafos é comutativo.

Demonstração. Sejam $E_1' = E(D(G_1))$ e $E_2' = E(D(G_2))$. Provaremos que dados dois vértices $(u,x) \in V^*$ e $(v,y) \in V^*$, então a aresta $\{(u,x),(v,y)\} \in E^*$ se, e somente se, a aresta $\{(x,u),(y,v)\} \in E^{**}$. Tem-se que $\{(u,x),(v,y)\} \in E^*$ se, e somente se:

1-
$$(u,v) \in E_1'$$
 e $f_1((u,v))(x) = y$ e $(v,u) \in E_1'$ e $f_1(v,u)(y) = (f_1((u,v)))^{-1}(y) = x$

2-
$$(x,y) \in E_2' = f_2((x,y))(u) = v = (y,x) \in E_2' = f_2(y,x)(v) = (f_2((x,y)))^{-1}(v) = u$$

 $\{(x,u),(y,v)\}\in E^{**}$ se, e somente se:

3-
$$(x,y) \in E_2'$$
 e $f_2((x,y))(u) = v$ e $(y,x) \in E_2'$ e $f_2(y,x)(v) = (f_2((x,y)))^{-1}(v) = u$ ou

4-
$$(u,v) \in E_1'$$
 e $f_1((u,v))(x) = y$ e $(v,u) \in E_1'$ e $f_1(v,u)(y) = (f_1((x,y)))^{-1}(y) = x$.

Como 1 é equivalente a 4 e 2 é equivalente a 3 o teorema está provado.

Teorema 3.2. Sejam $G_1 = (V_1, E_1)$ e $G_2 = (V_2, E_2)$ grafos funcionalmente ligados pelas aplicações $f_1 : E_1 \to F(V_2)$ e $f_2 : E_2 \to F(V_1)$. Para todo vértice (u, x) do grafo $G^* = (V^*, E^*) = (G_1, f_1) \times (G_2, f_2)$ tem-se que: $d_{G^*}((u, x)) = d_{G_1}(u) + d_{G_2}(x)$.

Demonstração. Para cada $(u,x) \in V^*$, denota-se por $E_{G^*}((u,x))$ o conjunto de arestas incidentes nesse vértice no grafo G^* . Constrói-se a aplicação $h_1: N_{G_1}(u) \to E_{G^*}((u,x))$ da seguinte forma: $h_1(v) = \{(v,y),(u,x)\}$ onde $y \in V_2$ é tal que $f_1((u,v))(x) = y$ com $(u,v) \in E(D(G_1))$; y existe pois $f_1((u,v))$ é bijetiva. Por outro lado h_1 é injetiva, pois se $v_1, v_2 \in N_{G_1}(u)$ e $v_1 \neq v_2$ então necessariamente $(v_1,y_1)(u,x) \neq (v_2,y_2)(u,x)$ independentemente do valor de y_1 e y_2 . De forma semelhante, construimos $h_2:N_{G_2}(x) \to E_{G^*}((u,x))$. Se uma aresta é incidente em (u,x) no grafo G^* ela tem a forma $\{(u,x),(v,y)\}$ logo existe $(u,v) \in E(D(G_1))$ tal que $f_1((u,v))(x) = y$ ou $(x,y) \in E(D(G_2))$ tal que $f_2((x,y))(u) = v$. Por construção de h_1 e h_2 tem-se que $h_1(N_{G_1}(u)) \cup h_2(N_{G_2}(v)) = E_{G^*}((u,x))$. Por outro lado, se $\{(u,x),(v,y)\} \in h_1(N(u))$ e $\{(u,x),(v,y)\} \in h_2(N(v))$ então existem arcos $(u,v) \in E(D(G_1))$ e $(x,y) \in E(D(G_2))$ tais que $f_1((u,v))(x) = y$ e $f_2((x,y))(u) = v$ o que contradiz a condição 3 da definição de aplicações de ligação logo, $h_1(N_{G_1}(u)) \cap h_2(N_{G_2}(v)) = \phi$. Podemos agora construir a bijeção

$$h: N_{G_1}(u) \cup N_{G_2}(x) \to E_{G^*}((u,v))$$
, definida por $h(a) = \begin{cases} h_1(a) & \text{se } a \in N_{G_1}(u) \\ h_2(a) & \text{se } a \in N_{G_2}(x) \end{cases}$. O que conclui a prova do teorema.

Do teorema anterior se obtém, de forma imediata, o seguinte corolário.

Corolário 3.2.1. Sejam $G_1 = (V_1, E_1)$ e $G_2 = (V_2, E_2)$ grafos funcionalmente ligados pelas aplicações $f_1 : E_1 \to F(V_2)$ e $f_2 : E_2 \to F(V_1)$, então o grafo $G^* = (V^*, E^*) = (G_1, f_1) \times (G_2, f_2)$ tem grau máximo $\Delta(G^*) = \Delta(G_1) + \Delta(G_2)$.

Em relação à conexidade, o produto funcional de grafos conexos não é necessarimamente conexo como mostra a Figura 3, mas também é possível obter um grafo conexo como resultado do produto funcional de dois grafos desconexos. O teorema abaixo oferece uma condição que garante a conexidade do grafo produto funcional, caso os fatores sejam conexos.

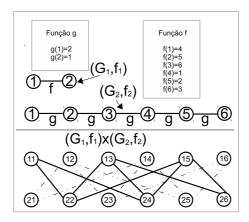


Figura 3: Produto funcional desconexo de dois grafos conexos

Teorema 3.3. Dados dois grafos $G_1 = (V_1, E_1)$ e $G_2 = (V_2, E_2)$ conexos e funcionalmente ligados pelas aplicações $f_1 : E_1 \to F(V_2)$ e $f_2 : E_2 \to F(V_1)$, se f_1 ou f_2 atribui a identidade a todos os arcos do digrafo correpondente, então o produto funcional de G_1 por G_2 segundo f_1 e f_2 é conexo.

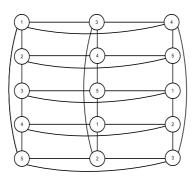
Demonstração. Sem perda de generalidade, suponhamos que f_2 atribui a identidade a todos os arcos de $D(G_2)$. Sejam $G^*(V^*, E^*) = (G_1, f_1) \times (G_2, f_2)$, (u, x) e (v, y) dois vértices de G^* . Como G_1 é conexo, existe um caminho $ux_1 \cdots x_p$ com $x_p = v$ em G_1 . Sejam agora $z_1 = f_1((u, x_1))(x)$, $z_{i+1} = f_1((x_i, x_{i+1}))(z_i)$, i = 1, ..., p-1, consequentemente existe um caminho $P_1 = (u, x)(x_1, z_1)(x_2, z_2) \cdots (v, z_p)$ em G^* . Como G_2 é conexo, existe um caminho $z_p y_1 \cdots y_q$ com $y_q = y$ em G_2 , e como $f_2(e)(v) = v$ para toda aresta $e \in E_2$, então $P_2 = (v, z_p)(v, y_1) \cdots (v, y)$ é um caminho em G^* . A união de P_1 e P_2 proporciona um caminho entre (u, x) e (v, y).

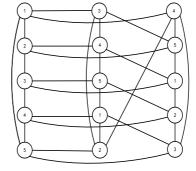
O Produto Cartesiano de dois Grafos é conexo se, e somente se, ambos os fatores forem conexos, e para mais detalhes, pode-se consultar [15, 12]. Observe que esse resultado é uma consequência do teorema anterior, pois no Produto Cartesiano

de Grafos, as aplicações de ligação f_1 e f_2 atribuem a identidade a todos os arcos dos digrafos correpondentes. Esse teorema impõe uma condição forte sobre uma das aplicações de ligação para que o produto funcional seja conexo. Mas, neste artigo, tal condição é suficiente para construir famílias de grafos conexos que admitem coloração com folga Δ com $\Delta+1$ cores, que foi a motivação inicial para a introdução do produto funcional. De qualquer forma, uma proposta de trabalho futuro é determinar condições mais fracas para as aplicações de ligação.

4. Uma aplicação do produto funcional

Nesta seção, mostraremos alguns resultados relativos à construção de famílias de grafos regulares que admitem uma coloração com folga Δ com $\Delta+1$ cores. Para um estudo mais detalhado, bem como outros resultados pode-se consultar [13]. Muitos grafos usados como grafos suporte para topologias de redes de interconexão, são obtidos mediante o produto cartesiano de grafos, como é o caso do hipercubo, mas nem sempre estes grafos admitem uma coloração com folga Δ com $\Delta+1$ cores (como é o caso do toro $C_3 \times C_5$, ilustrado na Figura 4). Com uma modificação adequada, pode-se obter um grafo que admite a coloração desejada mantendo as caracteristicas dos grafos suporte de redes (no que diz repeito à diâmetro, conexidade, regularidade, etc). As definições e teoremas a seguir exploram a ideia anterior.





- (a) Produto cartesiano de C_3 e C_5
- (b) Modificação do grafo $C_3 \times C_5$

Figura 4: $C_3 \times C_5$ e $C_3 \times C_5$ modificado, coloridos com 5 "cores"

Definição 4.1 (Grafo k-suporte). Dado um número natural $k, k \geq 3$, o grafo G = (V, E), é um k-suporte se satisfaz as sequintes condições

- 1. $G \notin um \ grafo \ regular \ de \ grau \ k-3;$
- 2. Existe uma aplicação $f: E(G) \to F(I_k)$, tal que G e C_k estão funcionalmente ligados por f e Id, onde Id: $E(C_k) \to F(I_{|V|})$ é a aplicação que a cada arco de $D(C_k)$ faz corresponder a função identidade;

3. O grafo $G^* = (f_1, G) \times (\mathbf{Id}, C_k)$ pode ser colorido com folga $\Delta(G^*)$ com

Teorema 4.1. Se G(V,E) é um grafo k-regular de classe 1, então G é (k+3)suporte.

Demonstração. Sejam $V = \{v_1, v_2, \dots, v_n\}, V(C_{k+3}) = \{u_0, u_1, \dots, u_{k+2}\}, C =$ $\{2,3,4\cdots,k+1\}$ um conjunto e $c:E\to C$, uma coloração de arestas de G usando o conjunto C. Dividiremos o restante da prova em dois casos:

Caso 1. $k = \Delta(G)$ é par:

Denotamos por i' o número (k+3)-i, para todo $i\in\{2,3,\cdots,(\frac{k}{2}+1)\}$. Veja agora que $i+i'=0 \pmod{k+3}$, e que para cada par $\{i,i'\}$ o subgrafo $G_i(V_i,E_i)$ induzido pelo conjunto de arestas $\{e \in E : c(e) = i \text{ ou } c(e) = i'\}$ é um grafo regular de grau 2 e que $V=V_i$. Logo, as componentes conexas de cada subgrafo G_i , são ciclos G_{i1}, \dots, G_{it_i} , onde t_i é um número natural, $t_i \leq \lfloor \frac{n}{3} \rfloor$, e cada ciclo G_{ij} está

associado a dois ciclos orientados
$$\overrightarrow{G}_{ij}^1$$
 e $\overrightarrow{G}_{ij}^2$ em $D(G)$. Definimos as aplicações $f_1: E(D(G)) \to V(C_{\Delta+3}), \ f_2: E(D(C_{\Delta+3})) \to V$ como segue:
$$f_1(x) = \begin{cases} r_i & \text{se } x \in E(\overrightarrow{G}_{ij}^1); \ i \in \{2, 3, \cdots, \frac{k}{2} + 1\}; \ j \in \{1, 2, \cdots t_i\} \end{cases}$$
 $r_{i'}$ se $x \in E(\overrightarrow{G}_{ij}^2); \ i \in \{2, 3, \cdots, \frac{k}{2} + 1\}; \ j \in \{1, 2, \cdots t_i\}$

 $f_2(x) = Id(x)$ para todo arco $x \in D(C_{\Delta+3})$, onde Id representa a função iden-

Sejam agora $G^* = (f_1, G_1) \times (f_2, C_{k+3}), V^* = V(G^*), E^* = E(G^*), A colora$ ção $f: V^* \to \{0, 1, \dots, (k+2)\}$ definida por: $f((v_i, u_i)) = j, i = 1, 2, \dots, n;$ $j=0,1,2,\cdots,(k+2)$ é uma coloração com folga $\Delta(V^*)$ com $\Delta(V^*)+1$ "cores" do grafo G^* . O conjunto de "cores" $\{0,1,\cdots,(k+2)\}$ possui k+3 elementos e pelo corolário 3.2.1 G^* é um grafo regular de grau $\Delta(G) + \Delta(C_{k+3}) = k+2$. Para analisar que a coloração tem folga $\Delta(G^*)$, observe que por simetria basta analisar um vétice de V^* , por exemplo (v_1, u_0) , seja $N_G(v_1) = \{x_2, ..., x_{k+1}\}$, por facilidade e sem perder generalidade vamos supor que $c(v_1x_j) = j, j \in \{2, ..., k+1\}$ (na verdade cada aresta incidente a v_1 possui uma cor diferente) então os extremos dos arcos de $(f_1, \vec{G}_1) \times (f_2, \vec{C}_{\Delta+3})$ que tem como origem (v_1, u_0) são $(v_1, u_1), (v_1, u_{k+2}), (x_2, u_2),$ $(x_3, u_3), (x_4, u_4), \dots, (x_{k+1}, u_{k+1})$ coloridos com as "cores" $1, k+2, 2, 3, \dots, k+1$ respectivamente, logo a coloração possui folga Δ .

Caso 2. $k = \Delta(G)$ é impar:

Caso 2. $k = \Delta(G)$ e impar: Observe que $2 + (k+1) = 3 + k = 4 + (k-1) \cdots = (\frac{k-1}{2}+1) + (\frac{k+3}{2}+1) = (\frac{k+1}{2}+1) + (\frac{k+1}{2}+1) = k+3$, e denotamos por i' o número (k+3)-i, para todo $i \in \{2, 3, \dots, (\frac{k+1}{2}+1)\}$. Agora o subgrafo $G_i(V_i, E_i)$ induzido pelo conjunto de arestas $\{e \in E : c(e) = i \text{ ou } c(e) = i'\}$ $i \in \{2, 3, \dots, (\frac{k-1}{2}+1)\}$ é um grafo regular de grau 2, e o subgrafo G_a , com $a = \frac{k+1}{2}+1$, induzido pelo conjunto de arestas $\{e \in E : c(e) = \frac{k+1}{2} + 1\}$ é um emparelhamento perfeito, e o raciocinio seguido no caso 1, é válido, o que prova o teorema.

A figura 5(a) mostra um grafo 3-regular de classe 1, colorido com os elementos do conjunto $\{2,3,4\}$. As setas indicam que ao fazer o produto funcional no sentido indicado é usada a rotação r_3 ou r_4 segundo o caso. Já no sentido contrário a r_4 , é usada r_2 pois $4+2=0 \pmod 6$, e no sentido contrário a r_3 é usada r_3 pois $3+3=0 \pmod 6$. A figura 5(b) ilustra o produto funcional com o ciclo C_6 , mas como o número de arestas é muito grande, foram representadas apenas as arestas que tem como extremo o vértice 0 de algum ciclo.

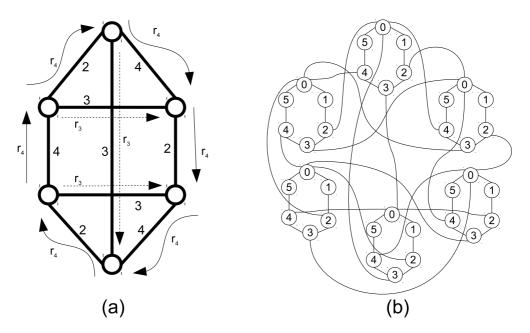


Figura 5: Grafo 3-regular de classe 1 usado como 6-suporte.

Teorema 4.2. Se $G(V, E) = \acute{e}$ um grafo completo então G \acute{e} um (|V| + 2)-suporte.

 $\begin{array}{l} Demonstração. \text{ Seja } G(V,E)=K_n. \text{ Se } n\text{ \'e par então } G\text{ \'e de classe 1 e o teorema}\\ \text{est\'a provado, logo vamos supor que } n\text{ \'e \'mpar. Sejam } V=\{v_0,v_1,...,v_{n-1}\}\text{ e }\\ c:E\to C=\{0,1,2,\cdots,n\}\text{ uma coloração de arestas de } G\text{ definida por }c(v_i,v_j)=\frac{(n+1)}{2}(i+j)\pmod{n};\ i,j\in\{0,1,\cdots,n-1\};\ i\neq j.\text{ \'E claro que }c\text{ \'e pr\'opria pois}\\ \text{fixando }i_0\in\{0,1,\cdots,n-1\},\text{ temos que }\frac{(n+1)}{2}(i_0+j_0)\equiv\frac{(n+1)}{2}(i_0+j_1)\pmod{n}\\ \text{se, e somente se, }j_0\equiv j_1\pmod{n}. \text{ Antes de continuar com a prova do teorema,}\\ \text{provaremos a seguinte, propriedade de }c\text{: se }c_0\in C\text{ est\'a ausente no v\'ertice }v_{i_0}\text{ e }\\ c(\{v_{i_0},v_{i_1}\})=0,\text{ ent\~ao }c'_0\text{ est\'a ausente no v\'ertice }v_{i_1},\text{ onde }c'_0\text{ denota o inverso}\\ \text{aditivo de }c_0\pmod{n}. \text{ Observe inicialmente que para todo }i\in\{0,1,2,...,n-1\},\text{ a }\\ \text{cor }i\text{ est\'a ausente no v\'ertice }v_i. \text{ De fato, }\frac{(n+1)}{2}(i+i)\equiv\frac{(n+1)}{2}(i+j)\pmod{n},\text{ se, e }\\ \text{somente se, }i\equiv j\pmod{n},\text{ e como }i,j\in\{0,1,\cdots,n-1\},\text{ ent\~ao }i=j,\text{ mas }G\text{ n\~ao }\\ \text{possui laços, por outro lado }\frac{(n+1)}{2}(i+j)=0\pmod{n}\text{ se, e somente se, }(i+j)=\\ \end{array}$

 $0 \pmod{n}$, isto é, $j=i' \pmod{n}$, de onde segue imediatamente a propriedade. Para cada $i \in \{0,1,2,\cdots n-1\}$, denotamos por e_i a aresta $\{v_i,v_{i'}\}$. Agora para cada par de cores $\{i,i'\}$ $i \in \{1,2,\cdots,\frac{n-1}{2}\}$, o subgrafo gerado pelo conjunto de arestas $\{e \in E : c(e) = i \text{ ou } c(e) = i'\} \cup \{e_i\}$ é um grafo regular de grau 2 cujo conjunto de vértices é V, logo G foi decomposto em $\frac{n-1}{2}$ grafos 2-regulares e podemos utilizar o mesmo raciocínio do teorema 4.1, usando as rotações $r_2, r_3, ..., r_{\frac{n+3}{2}}$ e suas inversas definidas em I_{n+2} nos respectivos ciclos orientados.

A figura 6 mostra um K_3 sendo usado como 5-suporte. Novamente foram omitidas as arestas não adjacentes a vértices rotulados com 0.

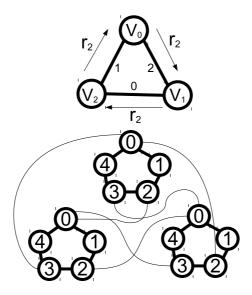


Figura 6: K_3 usado como 5-suporte.

5. Conclusões

O produto funcional é uma generalização do produto cartesiano, e que apresenta algumas das propriedades deste, como a comutatividade e o fato de que o grau máximo do grafo produto seja a soma dos graus máximos dos grafos fatores. Por outro lado, o produto funcional mostrou-se eficiente para construir grafos que de alguma forma "herdam" boas propriedades dos fatores, como foi mostrado na seção anterior, e ainda oferece mais "liberdade" que o produto cartesiano usual na hora de definir as adjacências do grafo produto. Para o futuro, pretende-se estudar o comportamento de algumas invariantes de grafos, assim como condições mais fracas

para garantir a conexidade do produto quando os fatores sejam conexos.

Abstract The paper presents a generalization of the Cartesian product of graphs, called functional product. We prove some properties of the new product and show an application, that consist in generate regular graphs that admits Δ -range coloring with $\Delta+1$ colors.

Referências

- [1] R. M. Barbosa, M.R.C. Santana, Produtos de Grafos Z_m -bem-cobertos, Tema, 13 (2012) 75–83.
- [2] V. A. Bojarshinov, Edge and total coloring of interval graphs, *Disc. Appl. Math.* 114 (2001) 23–28.
- [3] J. Bondy, U. Murty, "Graph Theory with Applications", North-Holland, New York, 1976.
- [4] C. N. Campos, C. P. Mello, A result on the total coloring of power of cycles, Disc. Appl. Math. 155 (2007) 585–597.
- [5] C. V. P. Friedmann, A. R. G. Lozano, L. Markenzon, C. F. E. M. Waga, Total coloring of Block-cactus graphs, *The journal of combinatorial mathematics and* combinatorial computing, 78 (2011) 273–283.
- [6] W. Imrich, S. Klavzar, D. Rall, "Topics in Graph Theory: Graphs and Their Cartesian Products", A K Peters Ltd, (2008).
- [7] A. Kemnitz, M. Marangio, Total colorings of cartesian products of graphs, Congres. Numer. 165 (2003), 99–109.
- [8] A. R. G. Lozano, C. V. P. Friedmann, A. S. Siqueira, Relação entre coloração de vértices com folga e coloração total equilibrada, Almanaque Unigranrio de Pesquisa, 1 (2011) 103–106.
- [9] A. R. G. Lozano, S. Jurkiewicz, C.V.P. Friedmann, Coloração total equilibrada de grafos, um modelo para redes de interconexão, *Pesquisa Operacional*, 28 (2008) 161–171.
- [10] A. R. G. Lozano, "Coloração Total Equilibrada de Grafos", Tese de Doutorado, COPPE, UFRJ, Rio de Janeiro, RJ, 2005.
- [11] K. Prnaver, B. Zmazek, On the total chormatic number of direct products graphs, *J. Appl. Math Comput.* (2009).
- [12] G. Sabidussi, Graph multiplication, Math. Z., 72, (1960) 446–457.
- [13] A. S. Siqueira. "Coloração total equilibrada em subfamílias de grafos regulares", Tese de Doutorado, COPPE, UFRJ, Rio de Janeiro, RJ, 2011.

- [14] X. Tan, H. Chen, J. Wu, Total coloring of planar graphs without adjacent 4-cycles. *The Eighth International Symposium on Operational Research and its Applications*, China (2009) 20–22
- [15] V.G. Vizing, The Cartesian product of graphs, Vyc. Sis., 9, (1963) 30–43.
- [16] H. Yap, "Total colorings of graphs", Springer, Berlin, 1996.