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ABSTRACT. The main contribution of this paper is concerned with the robustness of intuitionistic fuzzy
connectives in fuzzy reasoning. Starting with an evaluation of the sensitivity in n-order functions on the
class of intuitionistic fuzzy sets, we apply the results in the intuitionistic (S, N)-implication class. The
paper formally states that the robustness preserves the projection functions in this class.
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1 INTRODUCTION

Robustness or sensitivity can be conceived as a fundamental property of a logical system stating
that the conclusions are not essentially changed if the assumed conditions varied within reason-
able parameters. It is a relevant research area with important contributions [30, 32, 23, 33, 18].

This paper considers the δ-sensitivity (or pointwise senstivity) study as presented in [19] but
related to intuitionistic fuzzy connectives (IFCs), providing logical foundations to support robust
fuzzy applications based on the Atanassov’s Intuitionistic Fuzzy Logic [1, 4] (IFL). Additionally,
the δ-sensitivity of inference systems based on IFL can be analogously studied in the concepts
of multi-valued fuzzy logic – the Interval-valued Atanassov’s Fuzzy Logic [12] and integrated to
challenging approach concerned with the Interval-valued Intuitionistic Fuzzy Logic [3].

Thus, in systems based on fuzzy rules, each linguistic term of an input linguistic variable is
associated with a given fuzzy set [31]. Since the definition of these fuzzy sets is highly subjective,
such fuzzy system should be stable in the sense that smooth changes performed on the input
fuzzy sets should result only a slight change on their outputs. So, an immediate question follow
as: how does one can ensure stability of such systems by applying Fuzzy Logic (FL) and the
corresponding intuitionistic extension?
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134 ROBUSTNESS ON INTUITIONISTIC FUZZY CONNECTIVES

As a contribution to elucidate this question, this paper considers the robustness analysis defined
on δ-sensitivity and related to Atanassov’s intuitionistic fuzzy connectives. Such analysis can
improve the stability study of systems based on Atanassov’s intuitionistic fuzzy rules.

1.1 Relevance of the robustness analysis based on δ-sensitivity

In this paper we are analysing the δ-sensitivity of the steps of the fuzzy-rule inference engine,
dealing with logical connectives as algebraic n-order function, meaning that desirable logical and
intuitionistic properties are described by algebraic properties.

The main idea related to the δ-sensitivity study of an IFC was to provide an logical approach
as foundation to applied situations where the designer does not have complete knowledge about
of linguistic variables modelling the relationship of membership and non-membership functions
involved in an application.

Such proposed logical approach is performed by a � f (x, δ) operator related to n-order function
f : U n → U , taking into account an input x and a δ-parameter. Thus, it provides an interpreta-
tion of a function disturbance of fuzzy connective (FC), which is modelled by a δ-parameter and
a function f taking an input x, respectively. Indeed, a study on the influence and sensitivity of
such δ-parameter in a knowledge base leads to an improvement in the fuzzy system (faced on,
e.g., variances related to noise or temporal devices).

Thus, as FCs (mainly negations, t-norms and t-conorms, implications and coimplications) are
important elements in the fuzzy reasoning, the corresponding investigation of the δ-sensitivity
related to the pointwise analysis on the arguments of such operators, in terms of [19] and [25],
will be carried out in this work.

Firstly, this paper investigates how to measure the robustness of IFCs using the sensitivity of FCs
and it also derives the best perturbation parameters of intuitionistic fuzzy reasoning. Based on
these results, an extension of such approach to N -dual constructions of IFCs is performed.

1.2 Applications of the robustness analysis in Fuzzy Logic

In the research area of fuzzy control, one of the most important problems is the analysis of
stability and robustness of fuzzy controllers [17].

Significant works have been developed in this research area of fuzzy control, whose main re-
search problem is related to the analysis of stability and robustness of fuzzy controllers, e.g. [10,
20] and [32]. In [30], the concepts of maximum and average robustness of fuzzy sets were
already proposed.

Sensitivity analysis has become a major tool in the assessment of the reliability of engineering
structures. Given an input-output system, the question is which input variables have the most
decisive influence on the output on such systems. In [23], methods of modelling correlations and
interactivity in such systems are investigated. In [18] the fundamental property of robustness of
interval-valued fuzzy inference is studied. Moreover, robust interval matrices over (max, min)-
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algebra (fuzzy matrices) are studied and equivalent conditions for interval fuzzy matrices to be
robust are presented in [22].

The notion of δ-equalities of fuzzy sets is used in [10] to study robustness of fuzzy reasoning
based on fuzzy implication operators, generalized modus ponens and generalized modus tol-
lens. Other relations among the robustness of fuzzy reasoning, fuzzy conjunctions and classes of
implication operators were presented in [17].

More recently, the robustness of fuzzy reasoning from the perspective of perturbation of member-
ship functions is considered in [21] also including a method for judging the most robust elements
of different classes of fuzzy connectives. Additionally, a new method for sensitivity analysis of
fuzzy transportation problems is proposed in [8].

1.3 Main contribution and paper outline

This paper considers the notion of δ-sensitivity of fuzzy connectives in the Atanassov’s intuition-
istic fuzzy approach [2], which is characterized by the non-complementary relationship between
the membership and non-membership functions.

Since δ-sensitivity on interpretation of IFCs is closed related to truth and non-truth in condi-
tional fuzzy rules, this work is focused not only in the representable Atanassov’s intuitionistic
fuzzy t-norms and implications but also in their corresponding dual fuzzy connectives which are
representable intuitionistic fuzzy t-conorms and coimplications.

As the main result, the δ-sensitivity of the (S, N)-intuitionistic fuzzy implication class is intro-
duced, based on the study of δ-sensitivity of both classes, the intuitionistic fuzzy negations and
t-conorms. Moreover, the paper is extending the work in [26] to the dual Atanassov’s intuition-
istic approach.

The preliminaries describes the basic concepts of FCs and IFCs. The δ-sensitivity of FCs and
general results of robustness of IFCs are stated in Sections 3 and 4, respectively. Final remarks
are reported in the conclusion.

2 PRELIMINARIES

We start by recalling some basic concepts of FCs and IFCs we are going to use in our subsequent
developments.

2.1 Fuzzy connectives

Firstly, notions concerning t-(co)norms, (co)implications and dual functions are reported based
on [15] and [16].

2.1.1 Fuzzy negations

Let U = [0, 1] be the unit interval of real numbers. Recall that a function N : U → U is a fuzzy
negation if it satisfies the properties:

N1: N(0) = 1 and N(1) = 0; N2: If x ≥ y then N(x) ≤ N(y), ∀x, y ∈ U .

Tend. Mat. Apl. Comput., 15, N. 2 (2014)
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136 ROBUSTNESS ON INTUITIONISTIC FUZZY CONNECTIVES

A fuzzy negation satisfying the involutive property:

N3: N(N(x)) = x, ∀x ∈ U ,

is called a strong fuzzy negation (SFN), e.g. the standard negation NS(x) = 1 − x . When
x = (x1, x2, . . . , xn) ∈ U n and N is a fuzzy negation, the following notation is considered:

N(x) = (N(x1), N(x2), . . . , N(xn)) (2.1)

Let N be a negation. The N -dual function of f : U n → U is given by:

fN (x) = N( f (N(x))), ∀x ∈ U n . (2.2)

Notice that, when N is involutive, ( fN )N = f , that is the N -dual of fN is the function f . In
addition, a function f for which f = fN is called self-dual function.

2.1.2 Triangular norms and conorms

A function T : U 2 → U is a triangular-norm (t-norm) if and only if it satisfies, for all x ∈ U ,
the following properties.

T1: T (x, 1) = x ;

T2: T (x, y) = T (y, x);

T3: T (x, T (y, z)) = T (T (x, y), z);

T4: if x ≤ x ′, T (x, y) ≤ T (x ′, y).

The notion of a triangular conorm (t-conorm) S : U 2 → U can be defined in the same manner
with the exception that the identity T1 should be replaced by S1: S(0, x) = x , for all x ∈ U .

Let N be a fuzzy negation on U . The mappings TN , SN : U 2 → U denoting the N -dual functions
of a t-norm T and a t-conorm S, respectively, are defined as:

TN (x, y) = N(T (N(x), N(y))), SN (x, y) = N(S(N(x), N(y))). (2.3)

2.1.3 Fuzzy implications and coimplications

An implicator operator I : U 2 → U extends the classical implication function:

I0: I (1, 1) = I (0, 1) = I (0, 0) = 1, I (1, 0) = 0.

Definition 1. [16] When x, y, z ∈ U 2, a fuzzy implication (J )I : U 2 → U is an implicator
verifying the properties from I1 to I4 described in the following:

Tend. Mat. Apl. Comput., 15, N. 2 (2014)
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I1: I (x, y) ≥ I (z, y) if x ≤ z (first place antitonicity);

I2: I (x, y) ≤ I (x, z) if y ≤ z (second place isotonicity);

I3: I (0, y) = 1 (dominance of falsity);

I4: I (x, 1) = 1 (boundary condition);

Analogously, the notion of a coimplicator J : U 2 → U can be defined as an extension of
the classical coimplication function. Thus, such operators satisfy the corresponding boundary
conditions:

J0: J (0, 0) = J (1, 0) = J (1, 1) = 0, J (0, 1) = 1.

It is immediate that a fuzzy coimplication is an coimplicator analogously defined as a fuzzy
implication, replacing I3 and I4 in Definition 1 by

J3: J (x, 0) = 0 and

J4: J (1, y) = 0, respectively.

There exist many classes of fuzzy (co)implication functions (see, e.g., [15] and [9]). In this
paper we consider the class of (S, N)-implications defined in [16] as follow:

IS,N (x, y) = S(N(x), y), ∀x, y ∈ U, (2.4)

such that S is a t-conorm and N is a fuzzy negation. If N is a SFN, then IS,N is called a strong
implication or an S-implication.

Additionally, when SN is the N -dual function of the t-conorm S, the corresponding N -dual
functions are (S,N)-coimplications given by

(IS,N )N (x, y) = SN (N(x), y), ∀x, y ∈ U, (2.5)

The dual construction (T, N)-coimplication can be analogously defined.

2.2 Intuitionistic Fuzzy Connectives

These preliminaries consider the IFC concepts in IFL, by applying the strategy to deal with logi-
cal connectives as algebraic mappings, meaning that desirable logical and intuitionistic properties
are described in terms of algebraic properties of connectives (negation, conjunction, disjunction,
implication and coimplication).

According to [1], an Atanassov’s fuzzy intuitionistic fuzzy set (IFS) AI in a non-empty, universe
χ , is expressed as

AI = {
(x, μA(x), νA(x)) : x ∈ χ, μA(x) + νA(x)) ≤ 1

}
.

Tend. Mat. Apl. Comput., 15, N. 2 (2014)
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138 ROBUSTNESS ON INTUITIONISTIC FUZZY CONNECTIVES

Thus, an intuitionistic fuzzy truth value of an element x in an IFS AI is related to the ordered
pair (μA(x), νA(x)). Moreover, an IFS AI generalizes a fuzzy set A = {(x, μA(x))|x ∈ χ},
since νA(x), which means that the non-membership degree of an element x is less than or equal
to the complement of its membership degree μA(x), and therefore νA(x) is not necessarily equal
to 1 − μA(x).

Additionally, a function πA : χ → U , called an Atanassov’s intuitionistic fuzzy index (IFIx) of
an element x in an IFS A, is given as

πA(x) = NS(μA (x) + νA(x)) (2.6)

Let Ũ = {(x1, x2) ∈ U 2 : x1 ≤ NS(x2)} be the set of all intuitionistic fuzzy values and lŨ , rŨ :
Ũ → U be the projection functions on Ũ , which are given by lŨ (x̃) = lŨ (x1, x2) = x1 and
rŨ (x̃) = rŨ (x1, x2) = x2, respectively.

Thus, for all x̃ = (x̃1, . . . , x̃n) ∈ Ũ n , such that x̃i = (xi1, xi2) and xi1 ≤ NS(xi2) when 1 ≤ i ≤
n, consider lŨn , rŨn : Ũ n → U n as the projections given by:

lŨn (x̃) = (lŨ (x̃1), lŨ (x̃2), . . . , lŨ (x̃n)) = (x11, x21, . . . xn1)

rŨn (x̃) = (rŨ (x̃1), rŨ (x̃2), . . . rŨ (x̃n)) = (x12, x22, . . . xn2).

Consider also the order relation x̃ ≤Ũ ỹ ⇔ x1 ≤ y1 and x2 ≥ y2 such that 0̃ = (0, 1) ≤Ũ x̃ and
1̃ = (1, 0) ≥Ũ x̃ , for all x̃, ỹ ∈ Ũ [2].

2.2.1 Intuitionistic fuzzy negations

An Atanassov’s intuitionistic fuzzy negation (IFN shortly) NI : Ũ → Ũ satisfies, for all x̃ , ỹ ∈
Ũ , the following properties:

NI 1: NI (0̃) = NI (0, 1) = 1̃ and NI (1̃) = NI (1, 0) = 0̃;

NI 2: If x̃ ≥ ỹ then NI (x̃) ≤ NI (ỹ).

In addition, NI is a strong Atanassov’s intuitionistic fuzzy negation (SIFN) if it also verifies
the involutive property:

NI 3: NI (NI (x̃)) = x̃ , ∀x̃ ∈ Ũ .

Consider NI as IFN in Ũ and f̃ : Ũ n → Ũ . For all x̃ = (x̃1, . . . , x̃n) ∈ Ũ n , the NI -dual
intuitionistic function of f̃ , denoted by f̃NI : Ũ n → Ũ , is given by:

f̃NI (x̃) = NI ( f̃ (NI (x̃1), . . . , NI (x̃n))). (2.7)

In addition, when ÑI is a SIFN, f̃ is a self-dual intuitionistic function.

Tend. Mat. Apl. Comput., 15, N. 2 (2014)
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By [5, Theorem 1] [11, 12], a function NI : Ũ → Ũ is a strong intuitionistic fuzzy negation
(SIFN) if and only if there exists a (SFN) N : U → U expressed as:

NI (x̃) = (N(NS(x2)), NS(N(x1))), (2.8)

Additionally, if N = NS , Eq. (2.8) can be reduced to

NI (x̃) = (x2, x1). (2.9)

2.2.2 Intuitionistic fuzzy t-(co)norms

A function (SI )TI : Ũ 2 → Ũ is an Atanassov’s intuitionistic fuzzy triangular (co)norm (t-
(co)norm shortly), if it is a commutative, associative and increasing function with neutral element
(0̃) 1̃.

Consider now the t -representability concept proposed in [12, Def. 5], see also some results of
[5, Def. 3]. An intuitionistic t-conorm SI : Ũ 2 → Ũ and t-norm TI : Ũ 2 → Ũ is t-representable
when both conditions are held:

(i) there exist t-norms T ′, T : U 2 → U and t-conorms S′, S : U 2 → U such that, for all
x, y ∈ U , the respective equations

T ′(x, y) ≤ NS(S′(NS(x), NS(y))) and T (x, y) ≤ NS(S(NS(x), NS(y))) (2.10)

are verified; and

(ii) for all x̃ = (x1, x2), ỹ = (y1, y2) ∈ Ũ , each one of such intuitionistic fuzzy connectives
is given by the corresponding expressions

SI (x̃ , ỹ) = (S′(x1, y1), T ′(x2, y2)) and TI (x̃, ỹ) = (T (x1, y1), S(x2, y2)). (2.11)

2.2.3 Intuitionistic fuzzy implications

A binary function II : Ũ 2 → Ũ satisfying the conditions:

II 0 : II (0̃, 0̃) = II (0̃, 1̃) = II (1̃, 1̃) = 1̃ and II (1̃, 0̃) = 0̃;

is called an Atanassov’s intuitionistic fuzzy implicator.

According with [9, Definition 3], an Atanassov’s intuitionistic fuzzy implication II : Ũ 2 → Ũ
is an Atanassov’s intuitionistic fuzzy implicator such that, the analogous conditions from II 1 to
II 4 reported in Definition 1 are verified together with the additional property:

II 5: If x̃ = (x1, x2) such that ỹ = (y1, y2) ∈ Ũ , x1 + x2 = 1 and y1 + y2 = 1, it holds that
πII ((x1,x2),(y1,y2)) = 0, with π : χ → U is the IFIx given by Eq. (2.6).

Tend. Mat. Apl. Comput., 15, N. 2 (2014)
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Thus, recovering Definition 1 of a fuzzy implication in the sense of J. Fodor and M. Roubens’
work [16], an Atanassov’s intuitionistic fuzzy implication also reproduces fuzzy (co)implications
if, for all x̃ = (x1, x2), ỹ = (y1, y2) ∈ Ũ we have x1 = NS(x2) and y1 = NS(y2). According
to [2] and [12], another way of defining an operator II is to consider boundary conditions in II 0
and properties II 1 and II 2.

Based on [5, Theorem 4] and [11], a function II : Ũ 2 → Ũ is a representable Atanassov’s
intuitionistic (S, N)-implication based on a strong negation NI : Ũ → Ũ if and only if there
exist (S, N)-implications Ia , Ib : U 2 → U , such that for all x̃ = (x1, x2), ỹ = (y1, y2) ∈ U , II

is expressed as:
II (x̃ , ỹ) = (Ia(NS(x2), y1), NS(Ib(x1, NS(y2)))). (2.12)

Dually, in the same manner, an Atanassov’s intuitionistic fuzzy coimplication JI can be defined.
Moreover, a function JI : Ũ 2 → Ũ is a representable intuitionistic (T, N)-coimplication based
on a strong negation NI iff there exist (T, N)-coimplications Ja, Jb : U 2 → U , such that for all
x̃ = (x1, x2), ỹ = (y1, y2) ∈ U , JI is expressed as:

JI (x̃, ỹ) = (Jb(NS(x2), y1), NS(Ja(x1, NS(y2)))). (2.13)

When N = NS and Ja = Ia N and Jb = Ib N , it holds that JI = II NI is a self NI -dual intuition-
istic fuzzy operator.

3 POINTWISE SENSITIVITY OF FUZZY CONNECTIVES

The selection of values using e.g. Likert’s scale is an important way to elicit degrees of uncer-
tainty related to based-rule fuzzy systems, frequently expressed by composition performed on
fuzzy connectives. Thus, it is desirable that the result of the fuzzy logical operation does not
change much if slight changes (or small deviations) are performed in the inputs. This sensitive
study leads to the least sensitive or the most robust fuzzy inference rule.

Based on [19] and [25], the study of a δ-sensitivity of n-order function f at point x on the domain
U is considered in the following, in the context of robustness of fuzzy logic, mainly related to
the class of (S, N)-implications.

Definition 2. [19, Def. 1] Let f : U n → U be an n-order function, δ ∈ U and x = (x1, x2,

. . . xn), y = (y1, y2, . . . yn) ∈ U n. The δ-sensitivity of f at point x, denoted by � f (x, δ), is
defined by

� f (x, δ) = sup{| f (x) − f (y)| : y ∈ U n and
∨

(x, y) ≤ δ} (3.1)

wherever
∨

(x, y) = max{|xi − yi | : i = 1, . . . , n}.
Now, we investigate the δ-sensitivity in FCs, in terms of Definition 2. For that, the binary minimal
and maximal fuzzy aggregations were considered: ∧, ∨ : U 2 → U such that min(a, b) = a ∧ b
and max(a, b) = a ∨ b, respectively.

The δ-sensitivity of binary functions at point x ∈ U 2 are based on the monotonicity property
analysis performed in their both arguments. In this paper, such analysis considers the t-(co)norms

Tend. Mat. Apl. Comput., 15, N. 2 (2014)
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and fuzzy (co)implications. Thus, three more intuitive results related to the δ-sensitivity of these
fuzzy connectives, previously presented in [19], are reported in the sequence, which are also
followed by a brief discussion including some exemplification.

Proposition 1. [19, Theorem 2] Let f : U → U be a reverse order function, i.e., x ≤ y ⇒
f (x) ≥ f (y), for all x, y ∈ U. The δ-sensitivity of f at point x is given by

� f (x, δ) = [ f (x) − f ((x + δ) ∧ 1)] ∨ [ f ((x − δ) ∨ 0) − f (x)], (3.2)

for δ ∈ U. In particular, Eq. (3.2) holds for a fuzzy negation function.

Henceforth, in order to provide an easier notation, when f : U 2 → U and x = (x, y) ∈ U 2,
consider the following notations:

f �x ≡ f ((x − δ) ∨ 0, (y − δ) ∨ 0); f �x� ≡ f ((x − δ) ∨ 0, (y + δ) ∧ 1);
f �x ≡ f ((x + δ) ∧ 1, (y − δ) ∨ 0); f �x� ≡ f ((x + δ) ∧ 1, (y + δ) ∧ 1).

Proposition 2. [19, Theorem 1] Consider f : U 2 → U, δ ∈ U and x = (x, y) ∈ U 2.

(i) If f is a monotone function, i.e, x ≤ x ′, y ≤ y′ ⇒ f (x, y) ≤ f (x ′, y′) for all x, y ∈ U,
then it follows that

� f (x, δ) = ( f (x) − f �x) ∨ ( f �x� − f (x)) (3.3)

(ii) If f verifies both properties, 1-place antitonicity and 2-place isotonicity, then:

� f (x, δ) = ( f (x) − f �x) ∨ ( f �x� − f (x)) (3.4)

Based on [19], Proposition 3 formalizes a consequence of Proposition 2:

Proposition 3. [19, Corollary 1] Let T , S and IS,N be a t-norm, t-conorm and an (S, N)-
implication. When x ∈ U 2 and δ ∈ U, the next statements are true:

(i) the δ-sensitivity of a t-norm T and a t-conorm S at point x, respectively, are both defined
by Eq. (3.3);

(ii) the δ-sensitivity of an (S, N)-implication IS,N at point x, is defined by Eq. (3.4).

Remark 1. Let δ ∈ U . Based on Eq. (3.3), we have the next δ-sensitivity analysis:

(i) when x = (0, 1), the following is true:

�T ((0, 1), δ) = δ = �S((0, 1), δ); (3.5)

(ii) when x = (1, 0), by the commutativity of a t -(co)norm, we have the same results:

�T ((1, 0), δ) = δ = �S((1, 0), δ) (3.6)

Tend. Mat. Apl. Comput., 15, N. 2 (2014)
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(iii) when x = (0, 0) then the related expressions of a t-(co)norm are given as:

�T ((0, 0), δ) = T (δ, δ) and �S((0, 0), δ) = S(δ, δ). (3.7)

Additionally, based on Eq. (3.4) and taking x = (0, 1) and x = (1, 0), we obtain the correspond-
ing equalities:

�I(S,N)
((0, 1), δ) = 1 − I(S,N)(δ, 1 − δ); (3.8)

�I(S,N)
((1, 0), δ) = I(S,N)(1 − δ, δ). (3.9)

3.1 Pointwise sensitivity of N -dual fuzzy connectives

In the preceding section and according with the duality principle stated in Eq. (2.2), we described
the definitions as foundations to study the pointwise sensitivity of N -dual FCs as follows.

Proposition 4. [25, Proposition 6] Let f : U 2 → U be a second-order function and N be the
standard fuzzy negation. For all x = (x, y) ∈ U n, the following equalities hold:

(i) fN �x = N( f �N(x)�); (ii) fN �x� = N( f �N(x));
(iii) fN �x = N( f �N(x)�); (iv) fN �x� = N( f �N(x)).

Taken at a strong fuzzy negation N , Proposition 5 states that the sensitivity of a n-order function
f at a point x is equal to the sensitivity of its dual function fN taking the complement of x.

Proposition 5. [25, Theorem 1] Consider f : U 2 → U, δ ∈ U and x = (x, y) ∈ U 2. Let
� f (x, δ) be the sensitivity of f at point x. If N is the standard fuzzy negation (N = NS in
Eq. (2.1)) and fN is the N-dual function of f then the sensitivity of fN at point x is given by

� fN (x, δ) = � f (N(x), δ). (3.10)

Proposition 6. [25, Proposition 7] Let N be the standard fuzzy negation, fN be N-dual function
related to f : U 2 → U, δ ∈ U and x = (x, y) ∈ U 2. The sensitivity of fN at point x is given by
the following cases:

(i) if f is increasing w.r.t. its variables then we have that:

� fN (x, δ) = ( fN �x� − fN (x)) ∨ ( fN �x − fN (x)); (3.11)

(ii) if f is decreasing w.r.t. its first variable and increasing with its second variable then we
have:

� fN (x, δ) = ( fN �x� − fN (x)) ∨ ( fN �x − fN (x)). (3.12)

Proposition 7. [25, Proposition 8] Let (T )N , (S)N , (IS,N )N be N-dual functions related to a t-
norm T , a t-conorm S and an implication IS,N , respectively. If x ∈ U 2 and δ ∈ U, the statements
as follow hold:
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(i) �(T )N (x, δ) and �(S)N (x, δ) are both defined by Eq. (3.11);

(ii) �I(S,N) N
(x, δ) is defined by Eq. (3.12).

Remark 2. Consider δ ∈ U and the pair (I(S,N), I(S,N)N ) of mutual N -dual functions. By
Eqs. (3.8) and (3.9) stated in Remark 1, it follows the expressions:

�I(S,N) N
((1, 0), δ) = I(S,N)N (1 − δ, δ) = 1 − I(S,N)(δ, 1 − δ) = 1 − �I(S,N)

((0, 1), δ);
�I(S,N) N

((0, 1), δ) = 1 − I(S,N)N (δ, 1 − δ) = I(S,N)(1 − δ, δ) = �I(S,N)
((1, 0), δ);

which are examples of Eq. (3.12) when x = (1, 0) and x = (0, 1), respectively.

4 ROBUSTNESS OF INTUITIONISTIC FUZZY CONNECTIVES

The sensitivity of fuzzy connectives contributes to measure the robustness of fuzzy reasoning
directly linked to the selection of implication operators. When a fuzzy connective is modelled by
a continuous function fI , one can consider the modulus of continuity of fI , by using a modulus
of continuity of fI to any n-order intuitionistic fuzzy connective.

In order to provide a formal definition of robustness which can be applied to n-order Atanassov’s
intuitionistic fuzzy operators (as averages and medians aggregation functions) we introduce the
definition of the δ-sensitivity of f : Ũ n → Ũ at point x̃ = (x̃1, x̃2, . . . , x̃n) ∈ Ũ n .

Thus, δ-sensitivity of an intuitionistic operator f at point x̃ ∈ Ũ n is defined in terms of its
left-projection (lŨn (x̃)) and right-projection (rŨn (x̃)), which are related to the δ-sensitive of the
membership and non-membership degrees of an element x ∈ χ associated with the IFS f (Ũ n).

Definition 3. Let fI : Ũ n → Ũ be an n-order function, δ = (δ1, δ2) ∈ U 2 and x̃ =
(x̃1, x̃2, . . . , x̃n) ∈ Ũ n. The δ-sensitivity of fI at point x̃, denoted by � fI (x̃, δ), is defined by

� fI (x̃, δ) = sup

{
| fI (x̃) − fI (ỹ)| : ỹ ∈ Ũ n and

∨
(lŨn (x̃), lŨn (ỹ)) ≤ δ1

and
∨

(rŨn (x̃), rŨn (ỹ)) ≤ δ2

}
. (4.1)

wherever
∨

(x, y) = max{|xi − yi | : i = 1, . . . , n}.
The next proposition states that pointwise sensitivity is preserved by the projection functions
applied to intuitionistic fuzzy negation that is t-representable in the same sense of [5, 12] and [11].

Proposition 8. Let NI : Ũ → Ũ be a representable intuitionistic negation as defined by
Eq. (2.8). When δ = (δ1, δ2) ∈ U 2 and x̃ ∈ Ũ 2, the δ-sensitivity of NI at point x̃, is defined by

�NI (x̃, δ) = (�N (lŨ2 (x̃), δ1), �N (rŨ2 (x̃), δ2)). (4.2)

Proof. Straightfoward from Definition 3 and Proposition 1. �
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In the following, the study of a δ-sensitivity of an Atanassov’s intuitionistic t-(co)norm and an
intuitionistic fuzzy implication at point x̃ = (x1, x2) = ((x11, x12), (x11, x12)) on the domain
Ũ 2 extends the work introduced in [19] related to the class of such binary intuitionistic fuzzy
connectives which are representable by their corresponding fuzzy connectives [5, 11] and [12].

Proposition 9. Let (SI )TI : Ũ 2 → Ũ be a representable Atanassov’s intuitionistic fuzzy t-
(co)norm as defined by (Eq. (2.11b)) Eq. (2.11a). When δ = (δ1, δ2) ∈ U 2 and x̃ ∈ Ũ 2, the
δ sensitivity of TI at point x̃, denoted by �TI (x̃, δ), is given by

�TI (x̃, δ) = (�T (lŨ2 (x̃), δ1), �S(rŨ2 (x̃), δ2)). (4.3)

Analogously, the δ sensitivity of SI at point x̃ is given by

(�SI (x̃, δ) = (�S(lŨ2 (x̃), δ1), �T (rŨ2 (x̃), δ2))); (4.4)

Proof. For all x̃, ỹ ∈ Ũ 2 given as x̃ = (x̃1, x̃2), such that x̃1 = (x11, x12), x11 ≤ NS(x12) and
x̃2 = (x21, x22), x21 ≤ NS(x22); ỹ = (ỹ1, ỹ2), such that ỹ1 = (y11, y12), y11 ≤ NS(y12) and
ỹ2 = (y21, y22), y21 ≤ NS(y22). It holds that:

�TI (x̃, δ) =

= sup

{
|TI (x̃) − TI (ỹ)| : ỹ ∈ Ũn and

∨
(lŨn (x̃), lŨn (ỹ)) ≤ δ1 and

∨
(rŨn (x̃), rŨn (ỹ)) ≤ δ2

}
by Eq. (4.1)

= sup

{
|TI ((x11, x12), (x21, x22)) − TI ((y11, y12), (y21, y22))| : ỹ ∈ Ũn and

∨
(lŨn (x̃), lŨn (ỹ)) ≤ δ1 and

∨
(rŨn (x̃), rŨn (ỹ)) ≤ δ2

}

= sup
{
|(T (x11, x21), S(x12, x22)) − (T (y11, y21), S(y12, y22))| : ỹ ∈ Ũn and

∨
(lŨn (x̃), lŨn (ỹ)) ≤ δ1 and

∨
(rŨn (x̃), rŨn (ỹ)) ≤ δ2

}
by Eq. (2.11 b)

=
(

sup

{
|T (x11, x21) − T (y11, y21)| : ỹ ∈ Ũn and

∨
(lŨn (x̃), lŨn (ỹ)) ≤ δ1

}
,

sup
{
|S(y12, y22) − S(x12, x22)| : ỹ ∈ Ũn and

∨
(rŨn (x̃), rŨn (ỹ)) ≤ δ2

})
= �T (lŨ (x̃, δ1), �S(rŨ (x̃), δ2)) by Eq. (3.1)

Therefore, lŨ2 (�TI (x̃, δ)) = �T (lŨ2 (x̃), δ1) and rŨ2 (�TI (x̃, δ)) = �S(rŨ2 (x̃), δ2). Analo-
gously, it can be proved that for δ-sensitivity of SI at point x̃ which means, lŨ2 (�SI (x̃, δ)) =
�S(lŨ2 (x̃), δ1) and rŨ2 (�SI (x̃, δ)) = �T (rŨ2 (x̃), δ2). �

Remark 3. According with Eqs. (4.4) and (4.3) in Proposition 10, we obtain the expressions of
the δ-sensitivity of an intuitionistic fuzzy t-(co)norm as follows:
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(i) when x̃ = ((0, 0), (0, 0)) and δ̃ = (δ1, δ2), it holds that

�TI (x̃, δ) = (T (δ1, δ1), S(δ2, δ2)); �SI (x̃, δ) = (S(δ1, δ1), T (δ2, δ2)).

(ii) when x̃ = (1̃, 1̃) or x̃ = (0̃, 0̃) and δ̃ = (δ1, δ2), �TI (x̃, δ) = δ = �SI (x̃, δ).

Now, we study the robustness of an (S, N)-implication II at point x̃ ∈ Ũ 2.

Proposition 10. Let (JI )II : Ũ 2 → Ũ be a t-representable Atanassov’s intuitionistic ((T, N)-
implication) (S, N)-implication as defined by (Eq. (2.13)) Eq. (2.12). When δ̃ = (δ1, δ2) ∈ U 2

and x̃ ∈ Ũ 2, the δ-sensitivity of II at point x̃ is defined by

�II (x̃, δ̃) = (�Ia (lŨ2 (x̃, δ1), �Ib (rŨ2 (x̃)).δ2)) (4.5)

Analogously, the δ-sensitivity of JI at point x̃ is defined by

(�JI (x̃, δ̃) = (�Jb(lŨ2 (x̃), δ1), �Ja (rŨ2 (x̃)), δ2)) (4.6)

Proof. Let II be a representable (S, N)-implication obtained by the standard fuzzy negation
NS and a fuzzy (S, N)-implications Ia , Ib, as defined by Eq. (2.12), then:

�II (x̃, δ̃) =
= sup

{
|II (x̃) − II (ỹ)| : ỹ ∈ Ũ2 and

∨
(lŨ2 (x̃), lŨ2 (ỹ)) ≤ δ1 and

∨
(rŨ2 (x̃), rŨ2 (ỹ)) ≤ δ2

}
by Eq. (4.1)

= sup

{
|II ((x11, x12), (x21, x22)) − II ((y11, y12), (y21, y22))| : ỹ ∈ Ũ2 and

∨
(lŨ2 (x̃), lŨ2 (ỹ)) ≤ δ1 and

∨
(rŨ2 (x̃), rŨ2 (ỹ)) ≤ δ2

}

= sup

{
|(Ia(NS(x12), x21), NS(Ib(x11, NS(x22))) − (Ia (NS(y12), y21), NS(Ib(y11, NS(y22)))| :

ỹ ∈ Ũ2 and
∨

(lŨn (x̃), lŨ2 (ỹ)) ≤ δ1 and
∨

(rŨ2 (x̃), rŨ2 (ỹ)) ≤ δ2

}
by Eq. (2.12)

=
(

sup
{
|Ia(NS(x12), x21) − Ia (NS(y12), y21)| : ỹ ∈ Ũ2 and

∨
(lŨ2 (x̃), lŨ2 (ỹ)) ≤ δ1

}
,

sup

{
|NS(Ib(y11, NS(y22))) − NS(Ib(x11, NS(x22)))| : ỹ ∈ Ũ2 and

∨
(rŨ2 (x̃), rŨ2 (ỹ)) ≤ δ2

})

=
(

sup

{
|Ia(NS(x12), x21) − Ia (NS(y12), y21)| : ỹ ∈ Ũ2 and

∨
(lŨ2 (x̃), lŨ2 (ỹ)) ≤ δ1

}
,

sup
{
|Ib(x11, NS(x22)) − Ib(y11, NS(y22))| : ỹ ∈ Ũ2 and

∨
(rŨ2 (x̃), rŨ2 (ỹ)) ≤ δ2

})
= (

�Ia (lŨ (x̃), δ1),�Ib (rŨ (x̃), δ2)
)

by Eq. (3.1).

Therefore, for all x̃, ỹ ∈ Ũ 2, it follows that

lŨ2 (�II (x̃, δ̃)) = �Ia (lŨ (x̃), δ1); rŨ2 (�II (x̃, δ)) = �Ib(lŨ (x̃)), δ2).

In analogous manner, Eq. (4.6) can be proved. �

Tend. Mat. Apl. Comput., 15, N. 2 (2014)



�

�

“main” — 2014/8/31 — 22:36 — page 146 — #14
�

�

�

�

�

�

146 ROBUSTNESS ON INTUITIONISTIC FUZZY CONNECTIVES

Remark 4. Based on results in Remark 2, we are able to analyse the δ-sensitivity of an Atanas-
sov’s intuitionistic fuzzy ((T, N)-coimplication) (S, N)-implication (JI ) II as follows:

(i) when x̃ = (0̃, 1̃) and δ̃ = (δ1, δ2) then

�II ((0̃, 1̃), δ̃) = (
�Ia ((1, 1), δ1), �Ib (0, 0), δ2

) = (
1 − Ib(0, δ1), Ia(1 − δ2, 1)

);
�JI ((0̃, 1̃), δ̃) = (

Jb(0, δ1), Ja(1 − δ2, δ2)
)
.

(ii) when x̃ = (1̃, 0̃) and δ̃ = (δ1, δ2) then

�II ((1̃, 0̃), δ̃) = (
�Ia (lŨ (1̃), δ1), �Ib (rŨ (0̃), δ2)

) = (
Ia(1 − δ1, δ1), 1 − Ib(δ2, 1 − δ2)

);
�JI ((1̃, 0̃), δ̃) = (

Ja(1 − δ1, δ1), 1 − Jb(δ2, 1 − δ2)
)
.

4.1 Robustness of N -dual intuitionistic fuzzy connectives

Now, consider δ = (δ1, δ2) ∈ U 2, x̃ = (x̃1, x̃2), ỹ = (ỹ1, ỹ2) ∈ Ũ n in the following.

Proposition 11. Let fI : Ũ n → Ũ be an n-order function and � fI (x̃, δ) be the sensitivity of fI

at point x̃. When NI = NI S (as stated in Eq. (2.9)) and fI NI
the NI -dual function of fI , the

δ-sensitivity of fI NI
at point x̃ is given by

� fI NI
(x̃, δ) = � fI (NI (x̃), δ). (4.7)

Proof. Straightforward from Definition 3 and duality principle. �

Proposition 12. Let (SI )TI : Ũ n → Ũ be a representable Atanassov’s intuitionistic fuzzy t-
(co)norm given as Eqs. (2.11a) and (2.11b), and (�S(x, δ)) �T (x, δ) be the δ-sensitivity of a
t-(co)norm (S) T at point x. When N = NS and (SN ) TN is the N-dual function of (S) T , the
δ-sensitivity of TI NI at point x̃ is given by

�TI NS
(x̃, δ) = (

�T (NI (rŨ2 (x̃)), δ1), �S(NI (lŨ2 (x̃)), δ2)
)
. (4.8)

Analogously, the δ-sensitivity of SI NI at point x̃ is given by

�SI NS
(x̃, δ) = (

�S(NI (rŨ2 (x̃)), δ1), �T (NI (lŨ2 (x̃)), δ2)
)

(4.9)

Proof. Straightforward from Proposition 11. �

Remark 5. Based on results in Propositions 11 and 12 , we are able to analyse the δ-sensitivity
of an intuitionistic fuzzy t-(co)norm (SI ) TI as follows:

(i) when x̃ = (0̃, 1̃), by Eqs. (3.5) and (3.6) we have that:

�SI NS
(x̃, δ) = (

�S(0̃, δ1), �T (1̃, δ2)
) = δ = (

�T (1̃, δ1), �S(0̃, δ2)
) = �SI (NI (x̃), δ);

�TI NS
(x̃, δ) = (

�T (0̃, δ1), �S(1̃, δ2)
) = δ = (

�S(1̃, δ1), �T (0̃, δ2)
) = �TI (NI (x̃), δ).
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(ii) when x̃ = ((0, 0), (0, 0)) we have that:

�SI NI
(x̃, δ) = (

�T ((0, 0), δ1), �S((0, 0), δ2)
)=(

S(δ1, δ1), T (δ2, δ2)
)=�SI (NI (x̃), δ);

�TI NI
(x̃, δ) = (

�S((0, 0), δ1), �T ((0, 0), δ2)
)=(

T (δ1, δ1), S(δ2, δ2)
)=�TI (NI (x̃), δ).

Proposition 13. Let (JI )II : Ũ n → Ũ be a representable Atanassov’s intuitionistic fuzzy
(co)implication and (�J (x, δ)) �I (x, δ) be the δ-sensitivity of a (co)implication (J ) I at point
x. According with Proposition 11, when N is the standard fuzzy negation (N = NS in Eq. (2.1))
and (JN ) IN is the N-dual function of (J ) I , the δ-sensitivity of II NI at point x̃ is given by

�II NI
(x̃, δ) = (

�I (NS(rŨ (x̃)), δ1), �J (NS(lŨ (x̃)), δ2)
)
. (4.10)

Analogously, the δ-sensitivity of JI NI at point x̃ is given by

�JI NI
(x̃, δ) = (

�J (NS(rŨ (x̃)), δ1), �I (NS(lŨ (x̃)), δ2)
)
. (4.11)

Proof. Straightforward from Proposition 12. �

Remark 6. Based on results in Propositions 11 and 12, we are able to analyse the δ-sensitivity
of an Atanassov’s intuitionistic fuzzy t-(co)norm (SI ) TI as follows:

(i) when x̃ = (0̃, 1̃), according with Remark 4(i) it follows the expressions:

�II NI
((0̃, 1̃), δ̃) = (�Ia (1̃, δ1), �Ib (0̃, δ2));

�JI NI
((0̃, 1̃), δ̃) = (�Ja (1̃, δ1), �Jb(0̃, δ2)).

(ii) when x̃ = (1̃, 0̃) then by Remark 4(ii) it follows other dual expressions:

�II NI
((1̃, 0̃), δ̃) = (�Ia (0̃, δ1), �Ib (1̃, δ2));

�JI NI
((1̃, 0̃), δ̃) = (�Ja (0̃, δ1), �Jb(1̃, δ2)).

5 CONCLUSION

The main contribution of this paper is concerned with the study of robustness on Atanassov’s
intuitionistic fuzzy operators mainly used in fuzzy reasoning based on IFL. Taking the class of
strong fuzzy negation (standard negation), the paper formally states that the sensitivity of an
n-order Atanassov’s intuitionistic fuzzy connective at a point x ∈ U n preserves its projections
related to the sensitivity of its fuzzy approach at the same point. The work of estimating its sen-
sitivity to small changes is related to reducing sensitivity in the corresponding fuzzy connectives.

Our current investigation clearly aims to contemplate two approaches: (i) the sensitivity of
fuzzy inference dependent on intuitionistic fuzzy rules based on intuitionistic fuzzy connectives;
and (ii) the extension of the robustness studies to other main classes of (co)implications: R-
(co)implications and QL-(co)implications.
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RESUMO. A ánalise da robustez de conectivos fuzzy intuicionista consiste na principal

contribuição deste trabalho. A partir da avaliação da sensibilidade de funções n-arias na classe

dos conjuntos fuzzy intuicionistas, como proposto por Atanassov, os principais resultados são

aplicados na correspondente extensão intuicionista das (S, N)-implicações fuzzy. O trabalho

mostra que a robustez preserva as funções de projeções nesta classe de implicações fuzzy.

Palavras-chave: robustez, δ-sensibilidade, perturbação, lógica fuzzy, lógica fuzzy intuicio-

nı́stica, conectivos fuzzy intuicionistas.
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[5] M. Baczyński. On some properties of intuitionistic fuzzy implication. EUSFLAT 2003 (M. Wa-

genknecht and R. Hampel, eds.), pp. 168–171, Zittau (2003).

[6] B. Bedregal, G. Dimuro, R. Santiago & R. Reiser. On interval fuzzy S-implications. Information

Sciences, 180(8) (2010), 1373–1389.

[7] B. Bedregal, R. Reiser & G. Dimuro. Revisiting XOR-Implications: Classes of fuzzy (Co)Implic-

ations Based on F-XOR (F-XNOR) Connectives. Intl. Journal of Uncertainty, Fuzziness and Know-
ledge-Based Systems, 21(6) (2013), 899–926.

[8] N. Bhatia & A. Kumar. A new method for sensitivity analysis of fuzzy transportation problems.
Journal of Intelligent and Fuzzy Systems, 25(1) (2013), 167–175.

[9] H. Bustince, E. Barrenechea & V. Mohedano. Intuitionistic fuzzy implication opertors – an expression

and main properties. Int. Journal of Uncertainty, Fuzziness and Knowledge-BasedSystems (IJUFKS),

12(3) (2004), 387–406.

[10] K. Cai. Robustness of fuzzy reasoning and σ -Equalities of Fuzzy Sets. IEEE Transaction on Fuzzy

Systems, 9(5) (2001), 738–750.

[11] G. Cornelis, G. Deschrijver & E. Kerre. On the representation of intuitionistic fuzzy t-norms and
t-conorms. IEEE Transaction on Fuzzy Systems, 12(1) (2004), 45–61.

[12] G. Cornelis, G. Deschrijver & E. Kerre, Implications in intuitionistic fuzzy and interval-valued
fuzzy set theory: construction, classification and application. Int. Journal of Approximate Reason-

ing, 35 (2004), 55–95.
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Águas de Lindóia, pp. 1–10, (2012).

[27] R. Reiser & B. Bedregal. Interval-valued intuitionistic fuzzy implications – Construction, properties
and representability. Information Sciences, 248 (2013), 68–88.

[28] R. Reiser & B. Bedregal. K-operators: An approach to the generation of interval-valued fuzzy impli-

cations from fuzzy implications and vice versa. Information Sciences, 257 (2014), 286–300.

[29] L. Yangfang, K. Qin & X. Hea. Robustness of fuzzy connectives and fuzzy reasoning. Fuzzy Sets and

Systems, 225 (2013), 93–105.

[30] M. Ying. Perturbation on fuzzy reasoning. IEEE Transactions on Fuzzy Systems, 7 (1999), 625–629.

[31] L.A. Zadeh. Fuzzy sets. Information and Control, 15(6) (1965), 338–353.

[32] L. Zhang & K. Cai. Optimal fuzzy reasoning and its robustness analysis. Int. Journal of Intelligent

Systems, 19(11) (2004), 1033–1049.

[33] Z. Zheng, W. Liu & K. Cai. Robustnessof fuzzy operators in environments with random perturbations.

Soft Comput., 14 (2010), 1339–1348.

Tend. Mat. Apl. Comput., 15, N. 2 (2014)


