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Abstract. In this paper we present a spatial stochastic model for genetic recombi-
nation, that answers if diversity is preserved in an infinite population of recombinat-
ing individuals distributed spatially. We show that, for finite times, recombination
may maintain all the various potential different types, but when time grows in-
finitely, the diversity of individuals extinguishes off. So under the model premisses,
recombination and spatial localization alone are not enough to explain diversity
in a population. Further we discuss an application of the model to a controversy
regarding the diversity of “Major Histocompatibility Complex” (MHC).
Keywords. Genetic recombination, spatial stochastic model, Major Histocompat-
ibility Complex (MHC).

1. Introduction

Mendelian laws of inheritance, when applied to infinite populations under random
mating, lead to Hardy-Weinberg laws, which state that gene and genotype pro-
portions do not change after the first generation [2]. When considered over finite
populations without mutation, random genetic drift leads the population to ho-
mozigosity, even in the presence of recombination. Our aim is, then, to investigate
how the proportion of different genotypes varies in an infinite population that is dis-
tributed spatially, trying to verify the role of recombination in this setting, mainly
its implication for population diversity.

In order to build the model, we consider some hypotheses which we explicit in
the sequel:
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i) The population consists of haploid individuals;

ii) There are an infinite number of individuals, each occupying a position in Z;

iii) A newborn individual is always formed by the contribution of genes from two
distinct individuals;

iv) We do not consider any biochemical or metabolic influence on the genetic in-
heritance, i.e., mutations do not occur, nor any kind of error during the process of
genetic inheritance; besides there are no selective forces acting over the population.

The model recalls the “Voter Model”, a stochastic model originally developed
to study the interaction of two distinct populations competing for a territory [3].
Stochastic models treat naturally random fluctuations that usually happen in the
environment. In population genetics, e.g., it is natural to assume that allele fre-
quency variation is influenced by probabilistic factors. Then, through the knowledge
of the population state in a generation, and given a reproduction scheme for indi-
viduals, we can determine the probability of reapearance of a sample of genes in
the next generation [6].

The modelling procedure can be described briefly as follows. We dispose each
individual in different positions for each time step. An individual’s genes one step
ahead are inherited from the recombination of its neighbours’ genes in the current
step with equal probability. This originates a stochastic process that will be anal-
ysed by a dual process. The building of this dual process allows us to look back on
the evolution of the population and retrieve information about which individuals
at time step 0 donated the genes that constitute some individual at time step n.
That is, the dual process retrieves the genealogy of genes in the population. We
will propose the modelling for 2— and 3—loci individuals, noting that the last gives
opportunity for more recombination to occur.

In the next section we propose the models and obtain some conclusions from
them. In Section 3. we discuss an application to a controversy regarding the diver-
sity of “Major Histocompatibility Complex” (MHC). MHC molecules play a key
role in many immune functions, consequently, these molecules arise special medical
interest, since they are directly related to organ and tissue rejection, to pathogenic
susceptibility, as well as to individual variability regarding the susceptibility to dis-
orders of self-immune aetiology.

2. Mathematical modelling
2.1. The 2-loci model

Consider an infinite population consisting of haploid individuals, for which we anal-
yse two distinct loci A and B. Each individual is at a point of Z and each locus
admits only two alleles. In the first generation, the individuals at odd points will
reproduce, their new genes will be a recombination of their neighbours’ genes, in
such a way that, if the individual at position ¢ — 1 is, e.g., A; B1 and the individual
at position i + 1 is As B, then the individual at position ¢ in the first generation
will be either A; By or As B; with equal probabilities. In the second generation, the
individuals at even points will reproduce by the recombination of their neighbours.
And so on. The model building is adapted from the voter model [7].
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See the Diagram 1 for an example of how the model evolves.

(52) () (52) () n=>5
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Diagram 1: Voter model modified, adapted to genetics.

Let us develop mathematicaly the model: Let {V(i,n),i € Z,n € IN} be a set
of random variables uniformly distributed on the interval [0, 1]. Define the intervals
I =[0,1/2[ and Iy = [1/2,1]. For each n € IN and ¢ € Z consider the random
vector X (i,n) = [x1(i,n) 22(i,n)], which for & = 1,2, z£(i,n) has either the
value 0 or 1 (only two distinct alleles per locum). So, X(n) : Z — {0,1}2. We
define, then, the dynamics of the model in the following way: if i + n is odd, then
X (i,n) = X (i,n—1); if i + n is even, then

X(i,n)=> [z1(i+ (-1)*,n=1) 22— (-1)*n=D] Tv(m)er.)-
a=1

The initial distribution is given by P (X (i,0) =[a b]) = 7, for all ¢ € Z, with
Za)b:m 7ap = 1 and mgp > 0, for a,b € {0,1}. The function 14 is the characteristic
function of the set A. The initial distribution of a’s in the first coordinate and b’s
in the second are, respectively,

P(z1(-,0) =a) = Zwaj, and P(z2(-,0)=0b) = Zmb,
j=0 i=0

with a,b =0, 1.

2.1.1. Dual process and genealogy

Consider, for each (i,n) € Z x IN, the process Y*" (k) = (yi"(k), y5" (k)), such that
Yin(k) : Z — Z? is given by Y4 (0) = (4,i); Y5"(1) = (i,4) , if i + n is odd; and,
ifk=1and i+niseven,orif k >1

Yo (k) = Y™ (k— 1)+ Z (=1)*(dp1 , _6:82)I[V(y;’"(kfl),nkarl)eIa]’
a,B=1,2



268 Coutinho, Da Silva and Toledo

where dg;, is equal to 1if § = k, and equal to zero otherwise. This process represents
the genealogy for the individual at position 4, in generation n.

The following Diagram 2 represents a possible genealogy for an individual at
generation 5.

(5) n=>5
v
(") (5.) n=4
v v
(") (5.) n=3
N
(b) n=2
v
(bg) (al) n=1
v N\
(") n=0
-1 0 1 2 A

Diagram 2: Genealogy for the individual at position 1, generation 5.

By construction of the process Y we have the following

Lemma 2.1 (Duality relation, gene phylogeny). The following duality identity is
valid:

X(im) = |o (1" (n),0) @2(53" (), 0)] (2.1)

The genotype of the individual at position i, generation n, consists of the gene
at the first locus of the individual at the random position y;" (n) and of the gene at
the second locus of the individual at the random position y%"(n), both pertaining
to the initial generation.

Theorem 2.1. The proportion of genotypes, from the first generation on, keeps
constant.

The proof can be found in Appendix A.

2.1.2. Diversity loss

Consider the following equality, whose validity is shown in Appendix B:

P(X(i,n) # X(jn) = (1= D m | P(Y""(n) #Y""(n)). (2.2)

a,b=0,1

This equality translates mathematicaly an ancestrality relation between two individ-
uals chosen at random from generation n. That is, we can infer that the probability
of two individuals having distinct genotypes is associated with the probability of
their genes having come from distinct ancestors in the initial generation. Applying
expression (2.2) and letting n grows to infinity, we arrive at the following
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Theorem 2.2 (Genetic diversity loss). The probability of X (i,n) being different
from X (j,n) goes to zero for large n. It follows that the genetic diversity does not
keep itself on the population.

Proof. We may consider yzln a symmetric random walk in Z, without any loss of
generality. On the other hand, y5™ walks in Z independently of yi", except when
Y™ = 45" because when they meet each other, if 47" (k + 1) = 42" (k) + 1, then
we must have yb"(k + 1) = y5"(k) — 1, but if y*"(k + 1) = "™ (k) — 1, then
Yy (k +1) = y&"™ (k) + 1. The behaviour of ™ and yJ™ is analogous.

So, with probability one, yl " will couple with yl " when n grows to infinity, since
they are unidimensional symmetric recurrent random walks [8]. In the case that y2
is already equal to y2’ then there is nothing else to prove. In the case that Yy s
different from y2’ we can change the pomt of view and consider that Yy and y2"

are independent processes from y; = y;" = yJ"". Thus y2 " and y3", unidimensional
symmetric random walks, will couple with each other with probablhty one when n
increases. O

2.2. The 3-loci model

The model for three loci constitutes an extension of the model for two loci. For
3 distinct loci A, B and C, we will have the following recombination possibilities.
If the individual at position ¢ — 1 is, for example, A1 B1C; and the individual at
position 7+ 1 is A3 B2C5, then the individual at position ¢ will be either Ay BoC5 or
A1B1C5 or A1B3Ch or AsB1C5 or A3 B1Ch or As BoCy with equal probabilities.
We consider {V(i,n)} and {U(¢,n)} two sets of [0, 1]-uniformly distributed ran-

dom variables . We define Jg = [%, % {, =1,2,and J3 = [ 1]. Foreachn € IN

and i € Z let X(i,n) = [z1(¢,n) x2(i,n) x3(i,n)] be the random vector where,
for k = 1,2,3, x4 (i,n) takes the values 0 or 1. That is, X(n) : Z — {0,1}3. The
initial distribution is given by P (X (i,0) =[a b ¢]) = Tape. The model dynamics is:
if i +n is odd, then X (i,n) = X (i,n —1); if i + n is even, then

T ( ( 1)0(-‘,-651,”_1 T

2 3
:ZZ g (i — (=1)*+%82 n—1 Tvinyeraiviners-
a=18=1 | x5 (i — (=1)*F% n—1

2.2.1. Dual process and genealogy

We also build the dual process for this model. Consider, for each (i,n) € Z x IN,
the process Yo" (k) = (y;" (k) y5" (k), y5" (k)), such that Y™ (k) : Z — Z3 is given
by Y4™(0) = (i,4,i); Y*™(1) = (i,4,1), if i +n is odd; and if k = 1 and i + n is even,
or if k > 1, then

Yin(k) = Yk 1)+
Za 1Zﬁ 127 V(1) ((=1)%918,1 , (=1)%2645 , (—1)%%30,3)
><I[ V(Y™ (k—1),n— k+1)ela]1[ UV (k—1),n—k+1)€J5]"

By construction, it follows
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Lemma 2.2 (Duality relation). The following duality identity is true:

X(iv n) = |71 (y?n (n)7 0) 2 (y;,n(n), O) T3 (yi?n (n), O)} (2.3)

Theorem 2.3. The proportion of genotypes keeps constant from the first generation
on.

We will skip the proof since it is, mutatis mutandis, analogous to the proof of
Theorem 2.1.

2.2.2. Loss of diversity

The following identity is valid:

P(X(i,n) #X(Gn) = [1= > mope | P(Y""(n) #Y7"(n). (2.4)

a,b,c=0,1
The demonstration is analogous to the demonstration of equality (2.2).

Theorem 2.4. The probability of being X, (i) different from X,,(j) goes to zero
when n increases. Therefore it follows that the genetic diversity does not keep itselt
in the population.

Proof. We may consider, without loss of generality, that 5} and y5" are symmetric
random walks in Z, independent of each other. On the other hand, yé" moves in Z
independently from (v, y5™), except when y"™ = y5™ = yb", because when they
meet, we have the following possible implications:

o if yi’"(k —i— 1) =" (k) 4+ 1 and yb"(k 4+ 1) = y5™ (k) + 1, then y&"(k + 1) =
5" (k

) =
o if yl’"(k —i— 1) =y (k) — 1 and 35" (k + 1) = yo(k) — 1, then y5"(k + 1) =
5" (k) +

e otherwise, the movement of y%" to the left or to the right happens with equal
probabilities.

We can analyse analogously the movement of Yl ™ and yi".

So, the process yl " will almost surely couple with /™"
in the same way, yy" will a.s. couple with y2 2™ when n increases, since they are
unidimensional recurrent symmetric random walks [8].

In the case that y3" is already equal to y3’ then the proof ends.

In the case that y"
and take, for example, y5™, y3™ and y; as independent from each other, where
y1 = T y{n, besides the movement of y, = y5™ = y3™ will depend on that of

ys™ and y}", if y%" = yh" ‘We conclude, therefore, that when n goes to infinity,
the probability of y5™ and y" coupling with themselves goes to one.

when n increases, and

is different from y%", we can change the point of view

O
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2.3. Discussion

Firstly, in each model, we establish a duality relation between the stochastic pro-
cesses X and Y. It follows, by the stochastic process coupling technique, that, in
both models, the probability of two individuals being genetically distinct, P(X (i,n) #
X(j,n)), goes to zero when n goes to infinity. That is, the genetic diversity disap-
pears from the population as time goes by.

2.3.1. A comparison between the models

When we augment the number of loci from two to three, the diversity is maintained
longer when recombination is present. To ilustrate this behaviour see Figure 1 that
shows the simulated mean time for Y% and Y7 to couple, for various values of j
(j =2,12,22,...,102). The more j is distant from 0, it takes longer, in mean, for
Y%" and Y7" to assume the same value in Z2 or Z3. But the coalescence times in
Z3 are longer than in Z2.

Coalescence Mean Times

160000

140000

120000

100000
T L a—n
80000 =

'.’ =2 Loci
R4 + 3 Loci
60000 <
40000 —
20000 O

0

Time

02 12 22 32 42 52 62 72 82 92 102

Initial distance

Figure 1: Variation of the coalescence mean time with the initial distance
between individuals.

3. Application

3.1. Recombination and diversity of the MHC

The immune system of an organism is composed of cells and molecules responsi-
ble for the defense against infections. Even strange non-infectious substances may
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generate immune responses [10]. This is the case about rejection to grafting and to
transplantations performed between two people immunologically incompatible.

The role played by the immune system is to exhibit antigens against microor-
ganisms that invade the body to the lymphocytes that eliminate these pathogens.
Specialized proteins, the Human Leukocyte Antigens (HLA), execute this func-
tion; they are codified by a highly polygenic, polymorphic system, called “Major
Histocompatibility Complex” (MHC).

The term “major histocompatibility complex” derived from researches in which
tissues were transplanted between members of the same species. Rejection occuring
in many transplantations was thought of being determined by one gene solely, that
was called the major histocompatibility gene. Later, it was discovered that this
gene was in fact a complex, an ensemble of genes inherited as one that since has
been known as the major histocompatibility complex (MHC). Today, it is known
that each species has an MHC containing multiple genes.

MHC genes appear in all vertebrates, in humans they are designated Human
Leukocyte Antigens (HLA), since they were initially detected in leukocytes. The
human MHC is codified mainly by a region of the 6th chromosome that contains
more than 200 genes [9]. At least six polymorphic genic loci, separated and orga-
nized in clusters, were defined in a unique area of the 6th chromosome [4]. They
are the most polymorphic of the human genome, having hundreds of stable forms
(alleles) for each gene in the population already described. For example, a gene of
the human MHC that is polymorphic is HLA-B. Nowadays it has more than 150
alleles described. Nevertheless, this polymorphism is not valid for all MHC genes,
some of them have little polymorphism or are monomorphic. Approximately 224
genetic loci were identified englobing 3.5 megabases (Mgb) of DNA in MHC regions.
Possibly 180 genes are expressed and around 40% of them have some function in
the immune system. This region was one of the first “multimegabase” of the human
genome which was completely sequenced [9].

MHC polymorphism is a consequence of vertebrates’ evolutionary response
against invasion by microorganisms; thus it reassures the continuity of the species,
even in the presence of pandemics. Some individuals may survive a pandemic due
to the protective effect of MHC genetic polymorphism. The polymorphisms at
the binding region with the antigen determine the specificity of peptide binding.
Therefore the MHC molecule binds only with some few peptides among the many
at disposal around the cellular micro-environment [9]. Because of polymorphism it
is improbable the existence of two individuals that express identical MHC molecules.
This huge diversity is the main obstacle for organ and tissue transplantation sucess.

MHC molecules have another essential characteristic: they are polygenic. Being
polygenic means that these molecules are codified by multiple independent genes.
They are inherited in clusters called haplotypes and expressed co-dominantly in
each individual [10].

3.1.1. Controversy

Another important MHC characteristic is recombination. Nevertheless the hy-
pothesis that recombination contributes to the diversity of MHC throughout popu-
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lations is still disputed, since few comparative researches have computed estimates
of this complex recombination rates [11].> The spatial stochastic model for recombi-
nation presented above shows that recombination is able to maintain MHC diversity
in a population through long time periods, but when time goes to infinity, diversity
goes to zero almost surely.

The model puts in relevance the importance of polymorphism, polygeny and
recombination to the diversity of MHC molecules. Other issues such as the MHC
codominant pattern or the existence of more than 3 alleles for one locus for most
of MHC genes are not considered.5

On the other hand, the variability of MHC system evokes a series of questions
of scientific interest on its own, related to MHC uncommon polymorphism, natural
evolution, biological function of its diverse genes and their actions on the immune
system. Due to MHC genetic polymorphism it is improbable to find two individuals
that express identical MHC molecules. This such great diversity is the main ob-
stacle to successful organ and tissue transplantations [10]. Nonetheless, according
to the conclusions of the mathematical model developed above, this diversity will
extinguish off in the long run. Therefore, the observed diversity of MHC molecules
is not likely to depend on their high polymorphism, high polygeny, or on the great
number of loci involved in recombination; if it is not a transient effect, this diversity
may be due to other factors such as mutation.

3.2. Other practical issues

Recombination is recognized as an important factor potentially leading to evolution
advantage in populations [2], due to its role on the maintenance of population diver-
sity. But recombination solely, in spatially distributed infinite populations, is not
able to maintain diversity for longer times, in the context proposed by the models
described in this paper, for a finite number of loci. However, further research should
be developed in order to put in relevance other characteristics not considered so far,
for example, reproduction of diploid individuals, selective pressure, dominance rela-
tion between genes, or number of alleles per locum. It is likely that, e.g., increasing
the number of possible alleles for each locus, diversity will take longer to disappear
from the population.

Another important aspect is the rate of recombination which may not be the
same or constant through the population. This is a relevant issue, e.g., for phylo-
genetic tree estimation. If high rates of recombination are common in MHC genes,
re-evaluation of many inference-based phylogenetic analyses of MHC loci, such as
estimates of the divergence time of alleles and trans-specific polymorphism, may be
required [11].

51n the abscence of recombination, the genes of HLA complex are inherited as an isolated unity
of the 6th chromosome, the haplotype; the probability of two brothers being HLA-identical is
25%, according to Mendel laws: the child inherits a haplotype from the father and another from
the mother.

61t is worth noting that the MHC molecule is codified by genes pertaining to 6 loci, each proper
subset of them having potential probability of recombination.
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4. Conclusion

We proposed a mathematical model capable to verify the interference of recombina-
tion in the diversity of a spatially distributed infinite population. From the model,
we conclude that, as time increases, the probability of taking two distinct individ-
uals with the same genetic load, goes to one. Besides, the greater the number of
recombining loci considered, the longer the population diversity is maintained.
When the model was applied to the recombination of MHC molecules, we found
that recombination was not a suficient cause to the maintenance of MHC diversity.

Appendix
A  Proof of Theorem 2.1

By the duality relation (2.1), for n > 1, we have

P(X(i,n) = [ab]) =P([w1(yi’"(n)70) :vz(yé’"(n),o)]ﬂab])
=2 sez P([21(r,0) 22(s,0)] = [a b])P(Y“"(n) (r,s))
:ZT,SEZ (Zgl':o 7Taj) (ZZ 077117) Py
= (Lo mai) (Sizo min) Xper PO (0) = (1, 5))
= Z}:Oﬂ'aj ZLOM

B Proof of Equality (2.2)

P (X(i,n) # X(j,n)) _ . :
_p ( |:.I1 (yi,n (n)7 O) Zo (y;m’(n)7 O):| 75 |::E1 (y{,n (n>, O) Z2 (y%ﬂl (n)v O):| )
— Z P([:vl(ri,O) zTZ(Sin)] # [1[,‘1(7‘]‘,0) ‘TQ(Sj’O)])

ri;érj or Si#sj )
x P (Y“"(n) =(ri,s:), Y™ (n)=(ry, SJ))

- > =P ([2164,0) z2(5:,0)] = [21(5,0) z2(s;,0)])]
’rﬁérj or 51'758]'
x P (Yz,n (n) = (Tiasi)a ijn (n) = (Tj ,Sj))

= (1-Shmom) > PYER() = (i s), YO () = (1,55))

ri#r; O s;#s;
= (1 - Za,b:O,l 7T?zb) P (Yi’n(”) # Yj’n(”))
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