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Abstra
t. In this paper we present a spatial sto
hasti
 model for geneti
 re
ombi-

nation, that answers if diversity is preserved in an in�nite population of re
ombinat-

ing individuals distributed spatially. We show that, for �nite times, re
ombination

may maintain all the various potential di�erent types, but when time grows in-

�nitely, the diversity of individuals extinguishes o�. So under the model premisses,

re
ombination and spatial lo
alization alone are not enough to explain diversity

in a population. Further we dis
uss an appli
ation of the model to a 
ontroversy

regarding the diversity of �Major Histo
ompatibility Complex� (MHC).
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1. Introdu
tion

Mendelian laws of inheritan
e, when applied to in�nite populations under random

mating, lead to Hardy-Weinberg laws, whi
h state that gene and genotype pro-

portions do not 
hange after the �rst generation [2℄. When 
onsidered over �nite

populations without mutation, random geneti
 drift leads the population to ho-

mozigosity, even in the presen
e of re
ombination. Our aim is, then, to investigate

how the proportion of di�erent genotypes varies in an in�nite population that is dis-

tributed spatially, trying to verify the role of re
ombination in this setting, mainly

its impli
ation for population diversity.

In order to build the model, we 
onsider some hypotheses whi
h we expli
it in

the sequel:
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i) The population 
onsists of haploid individuals;

ii) There are an in�nite number of individuals, ea
h o

upying a position in Z;
iii) A newborn individual is always formed by the 
ontribution of genes from two

distin
t individuals;

iv) We do not 
onsider any bio
hemi
al or metaboli
 in�uen
e on the geneti
 in-

heritan
e, i.e., mutations do not o

ur, nor any kind of error during the pro
ess of

geneti
 inheritan
e; besides there are no sele
tive for
es a
ting over the population.

The model re
alls the �Voter Model�, a sto
hasti
 model originally developed

to study the intera
tion of two distin
t populations 
ompeting for a territory [3℄.

Sto
hasti
 models treat naturally random �u
tuations that usually happen in the

environment. In population geneti
s, e.g., it is natural to assume that allele fre-

quen
y variation is in�uen
ed by probabilisti
 fa
tors. Then, through the knowledge

of the population state in a generation, and given a reprodu
tion s
heme for indi-

viduals, we 
an determine the probability of reapearan
e of a sample of genes in

the next generation [6℄.

The modelling pro
edure 
an be des
ribed brie�y as follows. We dispose ea
h

individual in di�erent positions for ea
h time step. An individual's genes one step

ahead are inherited from the re
ombination of its neighbours' genes in the 
urrent

step with equal probability. This originates a sto
hasti
 pro
ess that will be anal-

ysed by a dual pro
ess. The building of this dual pro
ess allows us to look ba
k on

the evolution of the population and retrieve information about whi
h individuals

at time step 0 donated the genes that 
onstitute some individual at time step n.
That is, the dual pro
ess retrieves the genealogy of genes in the population. We

will propose the modelling for 2− and 3−lo
i individuals, noting that the last gives

opportunity for more re
ombination to o

ur.

In the next se
tion we propose the models and obtain some 
on
lusions from

them. In Se
tion 3. we dis
uss an appli
ation to a 
ontroversy regarding the diver-

sity of �Major Histo
ompatibility Complex� (MHC). MHC mole
ules play a key

role in many immune fun
tions, 
onsequently, these mole
ules arise spe
ial medi
al

interest, sin
e they are dire
tly related to organ and tissue reje
tion, to pathogeni


sus
eptibility, as well as to individual variability regarding the sus
eptibility to dis-

orders of self-immune aetiology.

2. Mathemati
al modelling

2.1. The 2-lo
i model

Consider an in�nite population 
onsisting of haploid individuals, for whi
h we anal-

yse two distin
t lo
i A and B. Ea
h individual is at a point of Z and ea
h lo
us

admits only two alleles. In the �rst generation, the individuals at odd points will

reprodu
e, their new genes will be a re
ombination of their neighbours' genes, in

su
h a way that, if the individual at position i− 1 is, e.g., A1B1 and the individual

at position i + 1 is A2B2, then the individual at position i in the �rst generation

will be either A1B2 or A2B1 with equal probabilities. In the se
ond generation, the

individuals at even points will reprodu
e by the re
ombination of their neighbours.

And so on. The model building is adapted from the voter model [7℄.
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See the Diagram 1 for an example of how the model evolves.
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Diagram 1: Voter model modi�ed, adapted to geneti
s.

Let us develop mathemati
aly the model: Let {V (i, n), i ∈ Z, n ∈ IN} be a set

of random variables uniformly distributed on the interval [0, 1]. De�ne the intervals
I1 = [0, 1/2[ and I2 = [1/2, 1]. For ea
h n ∈ IN and i ∈ Z 
onsider the random

ve
tor X(i, n) = [x1(i, n) x2(i, n)], whi
h for k = 1, 2, xk(i, n) has either the

value 0 or 1 (only two distin
t alleles per lo
um). So, X(n) : Z → {0, 1}2. We

de�ne, then, the dynami
s of the model in the following way: if i + n is odd, then

X(i, n) = X(i, n−1); if i+ n is even, then

X(i, n) =

2
∑

α=1

[x1 (i+ (−1)α, n−1) x2 (i− (−1)α, n−1)] 1I[V (i,n)∈Iα].

The initial distribution is given by P (X(i, 0) = [a b]) = πab, for all i ∈ Z, with
∑

a,b=0,1 πab = 1 and πab > 0, for a, b ∈ {0, 1}. The fun
tion 1IA is the 
hara
teristi


fun
tion of the set A. The initial distribution of a's in the �rst 
oordinate and b's
in the se
ond are, respe
tively,

P (x1(·, 0) = a) =
1

∑

j=0

πaj , and P (x2(·, 0) = b) =
1

∑

i=0

πib,

with a, b = 0, 1.

2.1.1. Dual pro
ess and genealogy

Consider, for ea
h (i, n) ∈ Z× IN, the pro
ess Y i,n(k) = (yi,n1 (k), yi,n2 (k)), su
h that

Y i,n(k) : Z → Z2
is given by Y i,n(0) = (i, i); Y i,n(1) = (i, i) , if i + n is odd; and,

if k = 1 and i+ n is even, or if k > 1

Y i,n(k) = Y i,n(k − 1) +
∑

α,β=1,2

(−1)α(δβ1 , −δβ2)1I[V (yi,n

β
(k−1),n−k+1)∈Iα],
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where δβk is equal to 1 if β = k, and equal to zero otherwise. This pro
ess represents
the genealogy for the individual at position i, in generation n.

The following Diagram 2 represents a possible genealogy for an individual at

generation 5.
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Diagram 2: Genealogy for the individual at position 1, generation 5.

By 
onstru
tion of the pro
ess Y i,n
we have the following

Lemma 2.1 (Duality relation, gene phylogeny). The following duality identity is

valid:

X(i, n) =
[

x1(y
i,n
1 (n), 0) x2(y

i,n
2 (n), 0)

]

. (2.1)

The genotype of the individual at position i, generation n, 
onsists of the gene
at the �rst lo
us of the individual at the random position yi,n1 (n) and of the gene at

the se
ond lo
us of the individual at the random position yi,n2 (n), both pertaining

to the initial generation.

Theorem 2.1. The proportion of genotypes, from the �rst generation on, keeps


onstant.

The proof 
an be found in Appendix A.

2.1.2. Diversity loss

Consider the following equality, whose validity is shown in Appendix B:

P (X(i, n) 6= X(j, n)) =



1−
∑

a,b=0,1

π2
ab



P
(

Y i,n(n) 6= Y j,n(n)
)

. (2.2)

This equality translates mathemati
aly an an
estrality relation between two individ-

uals 
hosen at random from generation n. That is, we 
an infer that the probability

of two individuals having distin
t genotypes is asso
iated with the probability of

their genes having 
ome from distin
t an
estors in the initial generation. Applying

expression (2.2) and letting n grows to in�nity, we arrive at the following
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Theorem 2.2 (Geneti
 diversity loss). The probability of X(i, n) being di�erent

from X(j, n) goes to zero for large n. It follows that the geneti
 diversity does not

keep itself on the population.

Proof. We may 
onsider yi,n1 a symmetri
 random walk in Z, without any loss of

generality. On the other hand, yi,n2 walks in Z independently of yi,n1 , ex
ept when

yi,n1 = yi,n2 , be
ause when they meet ea
h other, if yi,n1 (k + 1) = yi,n1 (k) + 1, then

we must have yi,n2 (k + 1) = yi,n2 (k) − 1, but if yi,n1 (k + 1) = yi,n1 (k) − 1, then

yi,n2 (k + 1) = yi,n2 (k) + 1. The behaviour of yj,n1 and yj,n2 is analogous.

So, with probability one, yi,n1 will 
ouple with yj,n1 when n grows to in�nity, sin
e

they are unidimensional symmetri
 re
urrent random walks [8℄. In the 
ase that yi,n2

is already equal to yj,n2 , then there is nothing else to prove. In the 
ase that yi,n2 is

di�erent from yj,n2 , we 
an 
hange the point of view and 
onsider that yi,n2 and yj,n2

are independent pro
esses from y1 = yi,n1 = yj,n1 . Thus yi,n2 and yj,n2 , unidimensional

symmetri
 random walks, will 
ouple with ea
h other with probability one when n
in
reases.

2.2. The 3-lo
i model

The model for three lo
i 
onstitutes an extension of the model for two lo
i. For

3 distin
t lo
i A,B and C, we will have the following re
ombination possibilities.

If the individual at position i − 1 is, for example, A1B1C1 and the individual at

position i+1 is A2B2C2, then the individual at position i will be either A1B2C2 or

A1B1C2 or A1B2C1 or A2B1C2 or A2B1C1 or A2B2C1 with equal probabilities.

We 
onsider {V (i, n)} and {U(i, n)} two sets of [0, 1]-uniformly distributed ran-

dom variables . We de�ne Jβ =
[

β−1
3 , β

3

[

, β = 1, 2, and J3 =
[

2
3 , 1

]

. For ea
h n ∈ IN

and i ∈ Z let X(i, n) = [x1(i, n) x2(i, n) x3(i, n)] be the random ve
tor where,

for k = 1, 2, 3, xk(i, n) takes the values 0 or 1. That is, X(n) : Z → {0, 1}3. The
initial distribution is given by P (X(i, 0) = [a b c]) = πabc. The model dynami
s is:

if i + n is odd, then X(i, n) = X(i, n− 1); if i+ n is even, then

X(i, n) =

2
∑

α=1

3
∑

β=1





x1

(

i− (−1)α+δβ1 , n−1
)

x2

(

i− (−1)α+δβ2 , n−1
)

x3

(

i− (−1)α+δβ3 , n−1
)





T

1I[V (i,n)∈Iα]1I[U(i,n)∈Jβ ].

2.2.1. Dual pro
ess and genealogy

We also build the dual pro
ess for this model. Consider, for ea
h (i, n) ∈ Z × IN,
the pro
ess Y i,n(k) = (yi,n1 (k), yi,n2 (k), yi,n3 (k)), su
h that Y i,n(k) : Z → Z3

is given

by Y i,n(0) = (i, i, i); Y i,n(1) = (i, i, i), if i+n is odd; and if k = 1 and i+n is even,

or if k > 1, then

Y i,n(k) = Y i,n(k − 1)+
∑2

α=1

∑3
β=1

∑3
γ=1(−1)α+1

(

(−1)δβ1δγ1 , (−1)δβ2δγ2 , (−1)δβ3δγ3
)

×1I[V (Y i,n
γ (k−1),n−k+1)∈Iα]1I[U(Y i,n

γ (k−1),n−k+1)∈Jβ ].

By 
onstru
tion, it follows
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Lemma 2.2 (Duality relation). The following duality identity is true:

X(i, n) =
[

x1(y
i,n
1 (n), 0) x2(y

i,n
2 (n), 0) x3(y

i,n
3 (n), 0)

]

(2.3)

Theorem 2.3. The proportion of genotypes keeps 
onstant from the �rst generation

on.

We will skip the proof sin
e it is, mutatis mutandis, analogous to the proof of

Theorem 2.1.

2.2.2. Loss of diversity

The following identity is valid:

P (X(i, n) 6= X(j, n)) =



1−
∑

a,b,c=0,1

π2
abc



P
(

Y i,n(n) 6= Y j,n(n)
)

. (2.4)

The demonstration is analogous to the demonstration of equality (2.2).

Theorem 2.4. The probability of being Xn(i) di�erent from Xn(j) goes to zero

when n in
reases. Therefore it follows that the geneti
 diversity does not keep itselt

in the population.

Proof. We may 
onsider, without loss of generality, that yi,n1 and yi,n2 are symmetri


random walks in Z, independent of ea
h other. On the other hand, yi,n3 moves in Z

independently from (yi,n1 , yi,n2 ), ex
ept when yi,n1 = yi,n2 = yi,n3 , be
ause when they

meet, we have the following possible impli
ations:

• if yi,n1 (k + 1) = yi,n1 (k) + 1 and yi,n2 (k + 1) = yi,n2 (k) + 1, then yi,n3 (k + 1) =

yi,n3 (k)− 1,

• if yi,n1 (k + 1) = yi,n1 (k) − 1 and yi,n2 (k + 1) = y2(k) − 1, then yi,n3 (k + 1) =

yi,n3 (k) + 1,

• otherwise, the movement of yi,n3 to the left or to the right happens with equal

probabilities.

We 
an analyse analogously the movement of yj,n1 , yj,n2 and yj,n3 .

So, the pro
ess yi,n1 will almost surely 
ouple with yj,n1 when n in
reases, and

in the same way, yi,n2 will a.s. 
ouple with yj,n2 when n in
reases, sin
e they are

unidimensional re
urrent symmetri
 random walks [8℄.

In the 
ase that yi,n3 is already equal to yj,n3 , then the proof ends.

In the 
ase that yi,n3 is di�erent from yj,n3 , we 
an 
hange the point of view

and take, for example, yi,n3 , yj,n3 and y1 as independent from ea
h other, where

y1 = yi,n1 = yj,n1 ; besides the movement of y2 = yi,n2 = yj,n2 will depend on that of

yi,n3 and yj,n3 , if yi,n3 = yj,n3 . We 
on
lude, therefore, that when n goes to in�nity,

the probability of yi,n3 and yj,n3 
oupling with themselves goes to one.
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2.3. Dis
ussion

Firstly, in ea
h model, we establish a duality relation between the sto
hasti
 pro-


esses X and Y . It follows, by the sto
hasti
 pro
ess 
oupling te
hnique, that, in

both models, the probability of two individuals being geneti
ally distin
t, P (X(i, n) 6=
X(j, n)), goes to zero when n goes to in�nity. That is, the geneti
 diversity disap-

pears from the population as time goes by.

2.3.1. A 
omparison between the models

When we augment the number of lo
i from two to three, the diversity is maintained

longer when re
ombination is present. To ilustrate this behaviour see Figure 1 that

shows the simulated mean time for Y 0,n
and Y j,n

to 
ouple, for various values of j
(j = 2, 12, 22, . . . , 102). The more j is distant from 0, it takes longer, in mean, for

Y 0,n
and Y j,n

to assume the same value in Z2
or Z3

. But the 
oales
en
e times in

Z3
are longer than in Z2

.

Figure 1: Variation of the 
oales
en
e mean time with the initial distan
e

between individuals.

3. Appli
ation

3.1. Re
ombination and diversity of the MHC

The immune system of an organism is 
omposed of 
ells and mole
ules responsi-

ble for the defense against infe
tions. Even strange non-infe
tious substan
es may
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generate immune responses [10℄. This is the 
ase about reje
tion to grafting and to

transplantations performed between two people immunologi
ally in
ompatible.

The role played by the immune system is to exhibit antigens against mi
roor-

ganisms that invade the body to the lympho
ytes that eliminate these pathogens.

Spe
ialized proteins, the Human Leuko
yte Antigens (HLA), exe
ute this fun
-

tion; they are 
odi�ed by a highly polygeni
, polymorphi
 system, 
alled �Major

Histo
ompatibility Complex� (MHC).

The term �major histo
ompatibility 
omplex� derived from resear
hes in whi
h

tissues were transplanted between members of the same spe
ies. Reje
tion o

uring

in many transplantations was thought of being determined by one gene solely, that

was 
alled the major histo
ompatibility gene. Later, it was dis
overed that this

gene was in fa
t a 
omplex, an ensemble of genes inherited as one that sin
e has

been known as the major histo
ompatibility 
omplex (MHC). Today, it is known

that ea
h spe
ies has an MHC 
ontaining multiple genes.

MHC genes appear in all vertebrates, in humans they are designated Human

Leuko
yte Antigens (HLA), sin
e they were initially dete
ted in leuko
ytes. The

human MHC is 
odi�ed mainly by a region of the 6th 
hromosome that 
ontains

more than 200 genes [9℄. At least six polymorphi
 geni
 lo
i, separated and orga-

nized in 
lusters, were de�ned in a unique area of the 6th 
hromosome [4℄. They

are the most polymorphi
 of the human genome, having hundreds of stable forms

(alleles) for ea
h gene in the population already des
ribed. For example, a gene of

the human MHC that is polymorphi
 is HLA-B. Nowadays it has more than 150
alleles des
ribed. Nevertheless, this polymorphism is not valid for all MHC genes,

some of them have little polymorphism or are monomorphi
. Approximately 224
geneti
 lo
i were identi�ed englobing 3.5 megabases (Mgb) of DNA in MHC regions.

Possibly 180 genes are expressed and around 40% of them have some fun
tion in

the immune system. This region was one of the �rst �multimegabase� of the human

genome whi
h was 
ompletely sequen
ed [9℄.

MHC polymorphism is a 
onsequen
e of vertebrates' evolutionary response

against invasion by mi
roorganisms; thus it reassures the 
ontinuity of the spe
ies,

even in the presen
e of pandemi
s. Some individuals may survive a pandemi
 due

to the prote
tive e�e
t of MHC geneti
 polymorphism. The polymorphisms at

the binding region with the antigen determine the spe
i�
ity of peptide binding.

Therefore the MHC mole
ule binds only with some few peptides among the many

at disposal around the 
ellular mi
ro-environment [9℄. Be
ause of polymorphism it

is improbable the existen
e of two individuals that express identi
al MHC mole
ules.

This huge diversity is the main obsta
le for organ and tissue transplantation su
ess.

MHC mole
ules have another essential 
hara
teristi
: they are polygeni
. Being

polygeni
 means that these mole
ules are 
odi�ed by multiple independent genes.

They are inherited in 
lusters 
alled haplotypes and expressed 
o-dominantly in

ea
h individual [10℄.

3.1.1. Controversy

Another important MHC 
hara
teristi
 is re
ombination. Nevertheless the hy-

pothesis that re
ombination 
ontributes to the diversity of MHC throughout popu-
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lations is still disputed, sin
e few 
omparative resear
hes have 
omputed estimates

of this 
omplex re
ombination rates [11℄.

5

The spatial sto
hasti
 model for re
ombi-

nation presented above shows that re
ombination is able to maintain MHC diversity

in a population through long time periods, but when time goes to in�nity, diversity

goes to zero almost surely.

The model puts in relevan
e the importan
e of polymorphism, polygeny and

re
ombination to the diversity of MHC mole
ules. Other issues su
h as the MHC


odominant pattern or the existen
e of more than 3 alleles for one lo
us for most

of MHC genes are not 
onsidered.

6

On the other hand, the variability of MHC system evokes a series of questions

of s
ienti�
 interest on its own, related to MHC un
ommon polymorphism, natural

evolution, biologi
al fun
tion of its diverse genes and their a
tions on the immune

system. Due to MHC geneti
 polymorphism it is improbable to �nd two individuals

that express identi
al MHC mole
ules. This su
h great diversity is the main ob-

sta
le to su

essful organ and tissue transplantations [10℄. Nonetheless, a

ording

to the 
on
lusions of the mathemati
al model developed above, this diversity will

extinguish o� in the long run. Therefore, the observed diversity of MHC mole
ules

is not likely to depend on their high polymorphism, high polygeny, or on the great

number of lo
i involved in re
ombination; if it is not a transient e�e
t, this diversity

may be due to other fa
tors su
h as mutation.

3.2. Other pra
ti
al issues

Re
ombination is re
ognized as an important fa
tor potentially leading to evolution

advantage in populations [2℄, due to its role on the maintenan
e of population diver-

sity. But re
ombination solely, in spatially distributed in�nite populations, is not

able to maintain diversity for longer times, in the 
ontext proposed by the models

des
ribed in this paper, for a �nite number of lo
i. However, further resear
h should

be developed in order to put in relevan
e other 
hara
teristi
s not 
onsidered so far,

for example, reprodu
tion of diploid individuals, sele
tive pressure, dominan
e rela-

tion between genes, or number of alleles per lo
um. It is likely that, e.g., in
reasing

the number of possible alleles for ea
h lo
us, diversity will take longer to disappear

from the population.

Another important aspe
t is the rate of re
ombination whi
h may not be the

same or 
onstant through the population. This is a relevant issue, e.g., for phylo-

geneti
 tree estimation. If high rates of re
ombination are 
ommon in MHC genes,

re-evaluation of many inferen
e-based phylogeneti
 analyses of MHC lo
i, su
h as

estimates of the divergen
e time of alleles and trans-spe
i�
 polymorphism, may be

required [11℄.

5

In the abs
en
e of re
ombination, the genes of HLA 
omplex are inherited as an isolated unity

of the 6th 
hromosome, the haplotype; the probability of two brothers being HLA-identi
al is

25%, a

ording to Mendel laws: the 
hild inherits a haplotype from the father and another from

the mother.

6

It is worth noting that the MHC mole
ule is 
odi�ed by genes pertaining to 6 lo
i, ea
h proper

subset of them having potential probability of re
ombination.
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4. Con
lusion

We proposed a mathemati
al model 
apable to verify the interferen
e of re
ombina-

tion in the diversity of a spatially distributed in�nite population. From the model,

we 
on
lude that, as time in
reases, the probability of taking two distin
t individ-

uals with the same geneti
 load, goes to one. Besides, the greater the number of

re
ombining lo
i 
onsidered, the longer the population diversity is maintained.

When the model was applied to the re
ombination of MHC mole
ules, we found

that re
ombination was not a su�
ient 
ause to the maintenan
e of MHC diversity.

Appendix

A Proof of Theorem 2.1

By the duality relation (2.1), for n ≥ 1, we have

P (X(i, n) = [a b]) = P
(

[x1(y
i,n
1 (n), 0) x2(y

i,n
2 (n), 0)] = [a b]

)

=
∑

r,s∈Z P ([x1(r, 0) x2(s, 0)] = [a b])P (Y i,n(n) = (r, s))

=
∑

r,s∈Z

(

∑1
j=0 πaj

)(

∑1
i=0 πib

)

P (Y i,n(n) = (r, s))

=
(

∑1
j=0 πaj

)(

∑1
i=0 πib

)

∑

r,s∈Z P (Y i,n(n) = (r, s))

=
(

∑1
j=0 πaj

)(

∑1
i=0 πib

)

B Proof of Equality (2.2)

P (X(i, n) 6= X(j, n))

= P
([

x1(y
i,n
1 (n), 0) x2(y

i,n
2 (n), 0)

]

6=
[

x1(y
j,n
1 (n), 0) x2(y

j,n
2 (n), 0)

])

=
∑

ri 6=rj or si 6=sj

P ([x1(ri, 0) x2(si, 0)] 6= [x1(rj , 0) x2(sj , 0)])

×P
(

Y i,n(n)=(ri, si), Y
j,n(n)=(rj , sj)

)

=
∑

ri 6=rj or si 6=sj

[1−P ([x1(ri,0) x2(si,0)]=[x1(rj ,0) x2(sj ,0)])]

×P
(

Y i,n(n)=(ri,si), Y
j,n(n)=(rj ,sj)

)

=
(

1−
∑1

a,b=0 π
2
ab

)

∑

ri 6=rj or si 6=sj

P
(

Y i,n(n) = (ri, si), Y
j,n(n) = (rj , sj)

)

=
(

1−
∑

a,b=0,1 π
2
ab

)

P
(

Y i,n(n) 6= Y j,n(n)
)
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