
TEMA Tend. Mat. Apl. Comput., 5, No. 2 (2004), 307-316.

c© Uma Publicação da Sociedade Brasileira de Matemática Aplicada e Computacional.

The Stochastic Geometric Machine Model
1

R.H.S. REISER, G.P. DIMURO, A.C.R. COSTA2, Escola de Informática, Universi-
dade Católica de Pelotas, 96010-000 Pelotas, RS, Brazil3.

Abstract. This paper introduces the stochastic version of the Geometric Machine
Model for the modelling of sequential, alternative, parallel (synchronous) and non-
deterministic computations with stochastic numbers stored in a (possibly infinite)
shared memory. The programming language L(D→

∞
), induced by the Coherence

Space of Processes D→

∞
, can be applied to sequential and parallel products in order

to provide recursive definitions for such processes, together with a domain-theoretic
semantics of the Stochastic Arithmetic. We analyze both the spacial (ordinal)
recursion, related to spacial modelling of the stochastic memory, and the temporal
(structural) recursion, given by the inclusion relation modelling partial objects in
the ordered structure of process construction.

1. Introduction

Following the same methodology used for the construction of the Interval Geometric
Machine [8], in this paper we introduce the stochastic version of the Geometric Ma-
chine Model [6], applying the computational approach suggested by Scott [9]. Based
on Domain Theory [10], the Girard’s domains called Coherence Spaces [2] charac-
terize the ordered structure of the Stochastic Geometric Machine (SGM). Coherent
subsets are conceived as linear traces of linear functions interpreting states and
processes of the SGM. The notion of coherence between coherent subsets provides
semantic interpretation for parallel and non-deterministic computations performed
over array structure of stochastic numbers [4], represented by pairs of elements of
the subspace of total objects of the Bi-structured Coherence Space of Rational Inter-
vals, IQ [1], a constructive computational representation of the set of real numbers.
The non-deterministic machine states are conceived as collections of linear func-
tions (with singletons modelling deterministic states) from the coherence space R3,
interpreting the memory positions related to the euclidian geometric space, to the
coherence space of values (IQ), modelling both the set of mean values and the set
of standard deviations of stochastic numbers. Over the inductive ordered struc-
ture called the Coherence Space of Processes (D∞), parallel and non-deterministic
processes operating on the array structures of the SGM memory are modelled. A
process, interpreted in the the domain D∞ as a coherent subset of linear functions,
can be represented as an expression in the textual language L(D∞) [7]. A stochastic

1This work was partially supported by CTINFO/CNPq and FAPERGS.
2PPGC/UFRGS
3e-mail:{reiser,dimuro,costa}@atlas.ucpel.tche.br

308 Reiser, Dimuro and Costa

number is identified by a pair (i, j) of memory positions, with expressions s[i, j, 0]
and s[i, j, 1] representing its value and its deviation, respectively. A connection be-
tween the textual language and the domain-theoretic structure of the algorithms
involving the arithmetic of stochastic numbers is presented.

2. Stochastic Numbers and Stochastic Arithmetic

Most of the algebraic properties of the exact arithmetic can be recovered in stochas-
tic arithmetic because it takes into consideration the numerical instabilities during
the run of a program. The use of stochastic arithmetic in computing makes possible
to estimate the accuracy of any result provided by a computer. In the fields of round-
off error analysis and validity of numerical software, it makes possible to develop
theoretical studies. In [4], an algebraic approach abstracted from the properties
of stochastic arithmetic permits to reduce computation with stochastic numbers to
computation in familiar vector spaces. For that, a stochastic number is conceived
as a gaussian random variable (in the continuous space) with a known mean value
(real number) and a known standard deviation (nonnegative real number). This
notion of (proper, usual) deviation is generalized and improper (negative) standard
deviations are studied. The algebraic properties of vector spaces are induced by
s-spaces (with group structure) defined over the set R of real numbers leading to a
generalization of the familiar concepts of linear dependence and basis and provides
an algebraic structure analogous to quasilinear spaces, which appears in interval
analysis [3]. In the following we resume the main aspects of stochastic arithmetic.

Definition 2.1. A stochastic number X is a gaussian random variable with known
mean value m and standard deviation s, i.e., S = {X = (m; s) |m ∈ R, s ∈ R+}.

LetX1 = (m1; s1), X2 = (m2; s2) ∈ S. Equality between two stochastic numbers
X1,X2 is given by X1 = X2 if m1 = m2 and s1 = s2.

Definition 2.2. The addition and scalar multiplication is defined by:

X1 +X2 = (m1; s1) + (m1; s1) =

(

m1 +m2;
√

s21 + s22

)

, (2.1)

α ∗X1 = α ∗ (m1; s1) = (αm1, |α|s1). (2.2)

A stochastic number (0; s) is called symmetric (with respect to the origin). The
set of symmetric stochastic numbers is denoted by S+ = {(0; s) | s ∈ R+}. If
X1,X2 ∈ S+, then ∀α ∈ R, X1 +X2 ∈ S+. In [4], it is shown that (S+,+,R, ∗) is
an s-space of monoid structure. Thus, for α, β ∈ R, X,X1,X2 ∈ R+, it holds that

α ∗ (X1 +X2) = α ∗X1 + α ∗X2); 1 ∗X = X; (2.3)

α ∗ (β ∗X) = (αβ) ∗X; (−1) ∗X = X; (2.4)
√

α2 + β2 ∗X = α ∗X + β ∗X, α, β ≥ 0. (2.5)

In (2.5) it must hold α, β ≥ 0 and thus, this property is not convenient for algebraic
computations. An unconditional relation is considered now.

The Stochastic Geometric Machine Model 309

A stochastic number of the form (0; s), with s ∈ R, is called extended symmetric.
In this case, s belongs to the set S⊕ = {(0; s) | s ∈ R} of extended symmetric
stochastic numbers. To obtain the extended symmetric stochastic arithmetic, we
consider the signed square root

√
α
◦

= σ(α)
√

|α|, whenever α ∈ R and σ(α) = + if
α ≥ 0 or σ(α) = −, otherwise.

Definition 2.3. Let X1,X2 ∈ S⊕. X1 ⊕X2 ∈ S⊕ is defined by

X1 ⊕X2 =

(

0;
√

σ(s1)s21 + σ(s2)s22

◦
)

. (2.6)

The structured set (S,⊕,R, ∗) is an s-space over R with group structure, where
X⊕opp(X) = 0 whenever 0 = (0; 0) and opp(X) = opp(0; s) = (0,−s). In addition,
if X+ = X and X− = opp(X), for α, β ∈ R, X ∈ S⊕, it holds that

√

α2 + β2
◦ ∗Xσ(α+β) =

√
α
◦ ∗Xσ(α) ⊕

√

β
◦ ∗Xσ(β). (2.7)

3. The ordered structure of the SGM

The ordered structure of the SGM is inspired on the ordered structure of the in-
terval version of the Geometric Machine Model [7, 8]. The methodology of con-
struction is developed by levels, starting from the coherence space D0 of elementary
processes. The intuitive notion of an elementary process, which modifies a single
memory position in a single unit of computational time (uct), can be described by
an elementary transition between deterministic memory states, given by a linear
function. The next coherence space in the construction, denoted by D̄0, models
concurrent sets of elementary processes. The coherence relation between such pro-
cesses models the admissibility of parallelism between them and essentially says
that two elementary processes can be performed in parallel if they do not conflict,
i.e., if they do not access the same memory position. That relation defines also the
web over which the coherence space of the whole set of processes in the model is
step-wise and systematically build. The domain D̄0 is thus the domain of parallel
products of elementary processes. In the dual construction, D̄⊥

0 , justified by the
presence of involutive negation ⊥ of coherence spaces [2], the incoherence relation
models the condition for non-determinism, namely, the conflict of memory accesses.
For the construction of the sequential product and the deterministic sum, consider
P0 ≡ D0

∐

D̄0

∐

D̄⊥
0 as the amalgamated (smash) sum of D0, D̄0 and D̄⊥

0 . The
direct product P0

∏

P0 is the coherence space of sequential products of two (par-
allel, non-deterministic or elementary) processes, whose execution is performed in
2uct. The coherence space P0

∏

B
P0 of the deterministic sums of (parallel, non-

deterministic or elementary) processes, performed in 2uct, is defined as the direct
product between B and P0

∏

P0. The coherence space D1, given by

D1 = P0

∐

(P0

∏

P0)
∐

(P0

∏

B
P0) where P0 = D0

∐

D̄0

∐

D̄⊥
0 ,

encompasses the first level of the construction of the ordered structure of the GM
model and provides the representations for all processes performed in at most 2uct.

Generalizing these ideas, each level identifies a subspace Dn+1,

310 Reiser, Dimuro and Costa

Dn+1 = Pn

∐

(Pn

∏

Pn)
∐

(Pn

∏

B
Pn), Pn = Dn

∐

D̄n

∐

D̄⊥
n , (3.1)

which reconstructs the objects from the level below it, preserving their properties,
and constructs the new objects specific of this level. The constructive relationship
between the levels is expressed by linear functions called embedding and projection
functions, which model constructors and destructors of processes, respectively.

Definition 3.1. Consider the indexes β ∈ {0, 1}, θ ∈ {0, 1, 2} to introduce the
embedding-functions and related projections

1. (a) γ
(0)
n , γ

(1)
n , γ

(2)
n : Pn, Pn

∏

Pn, Pn

∏

B
Pn → Dn+1, γ

(θ)
n (x) = {aθ |a ∈ x};

(b) Γ
(0)
n ,Γ

(1)
n ,Γ

(2)
n : Dn+1 → Pn,Pn

∏

Pn,Pn

∏

B
Pn, Γ

(θ)
n (x) = {a |aθ ∈ x}.

2. (a) φ
(0)
n , φ

(1)
n , φ

(2)
n : Dn, D̄n, D̄

⊥ → Pn, φ
(θ)
n (x) = {aθ|a ∈ x};

(b) Φ
(0)
n ,Φ

(1)
n ,Φ

(2)
n : Pn → Dn, D̄n, D̄

⊥, Φ
(θ)
n (x) = {a|aθ ∈ x}.

3. (a) ψ
(β)
n : Dn → Pn

∏

Pn, ψ
(β)
n (x) = {aβ |a ∈ x};

(b) Ψ
(β)
n : Pn

∏

Pn → Dn, Ψ
(β)
n (x) = {a |aβ ∈ x}.

4. (a) λ
(0)
n , λ

(1)
n , λ

(2)
n : Pn,Pn,B → Pn

∏

B
Pn, λ

(θ)
n (x) = {aθ |a ∈ x};

(b) Λ
(0)
n ,Λ

(1)
n ,Λ

(2)
n : Pn

∏

B
Pn → Pn,Pn,B, Λ

(θ)
n (x) = {a |aθ ∈ x}.

Definition 3.2. Let θ ∈ {0, 1, 2} be an index and consider 4

� π
→(0)
n , π

→(1)
n , π

→(2)
n : Dn, D̄n, D̄

⊥
n → Dn+1, and

� Π
→(0)
n , Π

→(1)
n , Π

→(2)
n : Dn+1 → Dn, D̄n, D̄

⊥
n ,

as embedding-functions and related projections, whose definitions are given by

1. if x ∈ γ
(0)
n [Pn], π

→(θ)
n+1 (x) = γ

(0)
n ◦ φ(θ)

n , Π
→(θ)
n+1 (x) = Φ

(θ)
n ◦ Γ

(0)
n ;

2. if x ∈ γ
(1)
n [Pn

∏

Pn], π
→(θ)
n+1 = γ

(1)
n ◦ ψ(0)

n ◦ φ(θ)
n , Π

→(θ)
n+1 = Φ

(θ)
n ◦ Ψ

(0)
n ◦ Γ

(1)
n ;

3. if x ∈ γ
(2)
n [Pn

∏

B
Pn], π

→(θ)
n+1 (x) = γ

(2)
n ◦ψ(0)

n ◦φ(θ)
n , Π

→(θ)
n+1 (x) = Φ

(θ)
n ◦Ψ(0)

n ◦Γ(2)
n .

According Definição 3.1, 3.2, an element in the web of a domain Dn+1 is indexed
by two or tree symbols. The leftmost symbol of an index indicates one of the follow-
ing constructors – (0) (for the simple inclusion of an element of the previous domain
Dn in the new domain Pn related to the sub-level Dn −Pn), (1) (indicating the par-
allel product of elements existing in the previous domain Pn) or (2) (indicating the
non-deterministic sum of elements existing in the previous level). The second and
third symbols related to the sub-level Pn − Dn+1, if present, mean the following:
that the element is the first (02) or the second (12) summand in a deterministic
sum represented in Pn

∏

B
Pn, or that it is the first (01) or the second (11) term in a

sequential product in Pn

∏

Pn. When the index is given by two symbols, the second
one is the inclusion of an element in Pn to Dn+1. The coherence space D→

∞ is defined
as the least fixed point for the equation (3.1), representing finite processes. The
completion procedure guarantees the existence of the least solution to the recursive

4The notations π
→ (0)
n ≡ πn and Π

→ (0)
n ≡ Πn are assumed.

The Stochastic Geometric Machine Model 311

equations defined by composition of morphisms in D→
∞. Thus, this model is able to

interpret processes that have no restrictions related to memory size, and it can be
completed for temporally infinite sequential processes. That is,

D→
∞ = P→

∞

∐

(P→
∞

∏

P→
∞)

∐

(P→
∞

∏

B
P→
∞), P→

∞ = D→
∞

∐

D̄→
∞

∐

D̄→⊥
∞ .

whose indexed tokens of its coherent subsets are expressed by sequences of two or
three symbols together with a suffix, following the denotation:
(1) : 00 ≡ 00.00.00 . . . related to finite processes;
(2) : 001 ≡ 001.001 . . . related to infinite sequential processes;
(3) : 002 ≡ 002.002 . . . related to infinite deterministic sums.

Definition 3.3. π→
n,∞ : Dn → D→

∞ is given by π→
0,∞(x) = {a:00 |a ∈ x}, and

(a) π→
n+1,∞(x) = {a:00 |a ∈ x}, if x ∈ γ

(0)
n [Pn],

(b) π→
n+1,∞(x) = {a:001 |a ∈ x}, if x ∈ γ

(1)
n [Pn

∏

Pn],

(c) π→
n+1,∞(x) = {a:002 |a ∈ x}, if x ∈ γ

(2)
n [Pn

∏

B
Pn].

Now, let x =
⋃↑

m∈ω{xm |xm ∈ π→
m,∞[Dm]} be a directed subset of finite approxima-

tions of x. The projection-function Π→
∞,n : D→

∞ → Dn is given by

Π∞,n+1(x) =
⋃↑

m∈ω {Πm,n ◦ Π→
∞,m (xm)} where Π→

∞,0(xm) = {dk |dk
:00 = xm} and

(a) Π→
∞,m(xm) = {a |a:00 ∈ xm}, if xm ∈ (π→

m,∞ ◦ γ(0)
m−1)[Pm−1],

(b) Π→
∞,m(xm) = {a |a:001 ∈ xm}, if xm ∈ (π→

m,∞ ◦ γ(1)
m−1)[Pm−1

∏

Pm−1],

(c) Π→
∞,m(xm) = {a |a:002 ∈ xm}, if xm ∈ (π→

m,∞ ◦ γ(2)
m−1)[Pm−1

∏

B
Pm−1].

Proposition 3.1. The morphisms presented in Def. 3.1, 3.2, 3.3 are linear func-
tions.

3.1. Semantic interpretation of the parallel product

Induced by the flat domain R3, the memory position information on the domain
D0 of elementary processes can be lifted to the coherent sets of the constructed
processes by the position-function Υ∞, formally presented in [7]. Based on that, a
semantic interpretation of parallel product is presented now.

Proposition 3.2. Let x =
⋃↑

i∈ω{xi |xi ∈ π→
n,∞[Dn]}, y =

⋃↑
i∈ω{yi | yi ∈ π→

m,∞[Dm]},
be objects of D→

∞ satisfying the hypotheses

• xn ∈ π
(00)
n,∞[Dn] ⊆ π→

n,∞[Dn] and ym ∈ π
(00)
m,∞[Dm] ⊆ π→

n,∞[Dm];
• Υ∞(x)

⋂

Υ∞(y) = ∅ and Υ∞(x′)
⋂

Υ∞(y′) = ∅ (concurrent processes);
• Π→

∞,k(x), Π→
∞,k(y) ∈ γ0

k−1 ◦ φ1
k−1 [Dk−1], where k = max{m,n}.

The linear function F(10) : D→
∞

∏

D→
∞ → D→

∞ is given by

F(10)(x ⊓ y) =
⋃↑

n,m{π→
k,∞[Π→

∞,k(xn) ∪ Π→
∞,k(ym)]}

Otherwise, if such conditions do not hold, F(10)(x ⊓ y) = ∅.

Proof. Firstly, we show that the monotonicity of function F(10) holds. Let x, y ∈ D→
∞

such that x =
⋃↑

n∈ω{xn} and y =
⋃↑

m∈ω{ym} whenever xn ∈ π→
n,∞[Dn] and

ym ∈ π→
m,∞[Dm]. Suppose x ⊓ y, x′ ⊓ y′ ∈ D→

∞

∏

D→
∞ such that x ⊓ y ⊆ x′ ⊓ y′. In

312 Reiser, Dimuro and Costa

this case, x ⊆ x′ and y ⊆ y′. (i) Let Π→
∞,k, π→

k+1,∞ and π
(00)
k+1,∞ be monotone func-

tions satisfying the hypotheses. Since Π→
∞,k and π

(00)
k+1,∞ are monotonic functions,

it follows that Π→
∞,k(x′), Π→

∞,k(y′) ∈ γ0
k−1 ◦ φ1

k−1 [Dk−1]. Therefore,

F(10)(x ⊓ y) = π→
k+1,∞ [Π→

∞,k(x) ∪ Π→
∞,k(y)]

⊆ π→
k+1,∞ [Π→

∞,k(x′) ∪ Π→
∞,k(y′)}] = F(10)(x

′ ⊓ y′).

(ii) Otherwise, when no hypothesis holds, F(10)(x ⊓ y) = ∅. Thus,

(ii.1) If x ∈ πθ1

n,∞(Dn), y ∈ πθ2

m,∞(Dm), θ1, θ2 6= 00, then x′ ∈ πθ1

n,∞(Dn), y′ ∈
πθ2

m,∞(Dm), θ1, θ2 6= 00. Therefore, F(10)(x ⊓ y) = ∅ = F(10)(x
′ ⊓ y′).

(ii.2) The coherent subsets x, y do not interpret concurrent processes. Then, by
inclusion relation, x′ and y′ do not. Therefore, F(10)(x ⊓ y) = F(10)(x

′ ⊓ y′) = ∅.
(ii.3) Π→

∞,k(x) 6∈ γ0
k ◦φ1

k [Dk]. That means, Π→
∞,k(x′) 6∈ γ0

k ◦φ1
k [Dk]. Thus, F(10)(x⊓

y) = ∅ = F(10)(x
′ ⊓ y′). The same result can be obtained if Π→

∞,k(y) 6∈ γ0
k ◦ φ1

k [Dk].
(ii.4) If x = x′ = y = y′ = ∅, it is followed that F(10)(x ⊓ y) = F(10)(x ⊓ y) = ∅.
We prove that F(10)(x ⊓ y) ⊆ F(10)(x

′ ⊓ y′).
When X ⊓ Y is a direct subset in D→

∞

∏

D→
∞, it happens that F(10)(X ⊓ Y) is also

directed. In fact, let X,Y ⊆ D→
∞ be directed subsets in D→

∞. Since D→
∞ is closed

under union of directed sets, ∪↑X ⊓ ∪↑Y ⊆ D→
∞

∏

D→
∞. In addition, when F(10) is

a monotonic function it follows that F(10)(∪↑X ⊓ ∪↑Y) is directed.

(i) If Π→
∞,k, π

(00)
k+1,∞ are continuous functions satisfying the hypotheses, then

F(10)(∪↑X ⊓ ∪↑Y) = π
(00)
k+1,∞ [Π→

∞,k(∪↑X) ∪ Π→
∞,k(∪↑Y)]

⊆ ∪↑{π(00)
k,∞ [Π→

∞,k(y) ∪ Π→
∞,k(x)] |x ∈ X, y ∈ Y }

= ∪↑{F(10)(x ⊓ y) |x ∈ X, y ∈ Y }.

(ii) Otherwise, if the above hypotheses do not hold, F(10)(∪↑X ⊓ ∪↑Y) = ∅. Since

F(10) is monotonic, F(10)(x⊓y) = ∅, ∀x ∈ X, y ∈ Y. Therefore F(10)(
⋃↑

X⊓⋃↑
Y) =

⋃{F(10)(x ⊓ y) |x ∈ X, y ∈ Y }. Thus, we show that F(10) is continuous.

Consider x⊓y, x′⊓y′ ∈ D→
∞

∏

D→
∞, such that (x⊓y)⋃

(x′⊓y′) = (x∪x′)⊓ (y∪y′) ∈
D→

∞

∏

D→
∞ and suppose Π→

∞,k, π→
k+1,∞ and π

(00)
k+1,∞ are stable functions.

(i) If the hypotheses hold, then

F(10)(x ⊓ y ∩ x′ ⊓ y′) = π
(00)
k+1,∞ [Π→

∞,k(x ∩ x′) ∪ Π∞,k(y ∩ y′)]
= π

(00)
k+1,∞ [(Π→

∞,k(x) ∪ Π→
∞,k(y)) ∩ (Π→

∞,k(x′) ∪ Π→
∞,k(y′))]

= F(10)(x ⊓ y) ∩ F(10)(x
′ ⊓ y′).

(ii) Otherwise, F(10)(x ⊓ y⋂

x′ ⊓ y′) = F(10)((x ∩ y) ⊓ (x′ ∩ y′)) = ∅:
(ii.1) If x∩x′ and y ∩ y′ do not interpreting concurrent processes, x, y and x′, y′ do
not. Then, F(10)(x ⊓ y) = F(10)(x

′ ⊓ y′) = ∅.
(ii.2) If x

⋂

x′ ∈ πθ1

n,∞(Dn), y
⋂

y′ ∈ πθ2

m,∞(Dm), and θ1, θ2 6= 00, then x, x′ ∈
πθ1

n,∞(Dn), y, y′ ∈ πθ2

m,∞(Dm). Thus, F(10)(x ⊓ y) = ∅ = F(10)(x
′ ⊓ y′).

The Stochastic Geometric Machine Model 313

(ii.3) If Π→
∞,k(x), 6∈ γ0

k ◦ φ1
k [Dk], it follows that F(10)(x ⊓ y) = ∅.

(ii.4) If x = x′ = y = y′ = ∅, by definition, F(10)(x ⊓ y) = F(10)(x ⊓ y) = ∅.
Based on the above cases, F(10) is an stable function.

ConsiderX,Y ⊆ D→
∞ such that ∀x, x′ ∈ X and ∀y, y′ ∈ Y ; we have x∪x′, y∪y′ ∈ D→

∞

and x, x′ ∈ πθ1

n,∞[Dn] ⊆ π→
n,∞[Dn], y, y′ ∈ πθ2

m,∞[Dm] ⊆ π→
m,∞[Dm].

(i)Let be Π→
∞,k, π→

∞,k and π
(00)
k+1,∞ linear functions and suppose that the hypotheses

hold. Then,

F(10)(∪X ⊓ ∪Y) = π
(00)
k,∞ [Π→

∞,k(∪X)
⋃

Π→
∞,k(∪Y)]

=
⋃

{π(00)
k,∞ [Π→

∞,k(x) ∪ Π→
∞,k(y)] |x ∈ X, y ∈ Y })

=
⋃

{F(10)(x ⊓ y) |x ∈ X, y ∈ Y }.

(ii) Otherwise, F(10)(
⋃

X ⊓⋃

Y) = ∅. Thus, by the monotonicity of function F(10),
proved at the beginning, F(10)(x ⊓ y) = ∅, whenever x ⊆ ⋃

X and y ⊆ ⋃

Y , i.e.,
F(10)(

⋃

X ⊓ ⋃

Y) =
⋃{F(10)(x ⊓ y) |x ∈ X, y ∈ Y }.

Based on the above cases, we showed that F(10) is linear.

4. The Machine Model and its Computations

We define the SGM model and its computations based on Scott [9]. Let S be a set
whose elements are represented in the mean value and standard deviation form.

Definition 4.1. The SGM model M = (MI,MD→

∞

,MB,MO) is defined as a tuple
of functions such that, for input and output values taken in the set S:
(i) MI : S → S is the input function. When, for instance, I = {i00},

M{i00}((am; as)) = {z}, z(i) =

xm ∈ IQ, if i = (0, 0, 0),

xs ∈ IQ, if i = (0, 0, 1),

∅, otherwise.

where xm, xs ∈ tot(IQ) are the best approximations of m, s, defined in [1].
(ii) MD→

∞

: L(D→
∞) ⊸ (S ⊸ S) is the program interpretation function, such that

MD→

∞

(p) = x interprets the program p as the process x.
(iii) MB : IT ⊸ (S ⊸ B) is the test interpretation function, such that MB(b) = t

interprets the symbol b as the test t, as it is defined in [6].
(iv) MO : S → S is the output function. For instance, when O = {oij}, then
M{oij}(s) = {(m; s) | z[i, j, 0] = xv, z[i, j, 1] = xs ∈ IQ, s ∈ s}.

The computation of a program p with an input data in results in the production
of the output data out = MO ◦MD→

∞

(p) ◦MI(in).

4.1. Programming stochastic arithmetic in SGM

A stochastic number stored in the memory of the SGM machine is labelled by a
reference position (l, i) ∈ R2 and a third index indicating its mean value (0) and

314 Reiser, Dimuro and Costa

standard deviation (1). In this context, z[l, i, 0], z[l, i, 1] represent, respectively, the
mean value and the standard deviation of a stochastic number stored in the reference
position (l, i). Some expressions of elementary processes (assignment statements)
and their corresponding interpretation in the domain D→

∞ are given in Table 1,
where assignment, sum, scalar multiplication, square root, and power operations
performed over memory positions are considered. In addition, the abs function
returns the absolute value of the real number stored in the memory position.

Table 1: Expressions of elementary processes and their domain interpretations.

L(D→
∞) D→

∞

ad m(l,m, n, i, j, k) ≡ (z[l, i, 0] := z[m, j, 0] + z[n, k, 0]) {ad m(li0)
:00 }

ad s(l,m, n, i, j, k) ≡ (z[l, i, 1] := sqrt(z[m, j, 1]2 + z[n, k, 1]2)) {ad s(li1):00 }
ad sy m(l,m, n, i, j, k) ≡ (z[l, i, 0] := 0) {ad sy m(li0)

:00 }
ad sy s(l,m, n, i, j, k) ≡ (ad s(l,m, n, i, j, k) {ad sy s(li1):00 }
scm m(l, i) ≡ (z[l, i, 0] := z[l, i, 0] ∗ z[l, i, 2]) {scm m

(li0)
:00 }

scm s(l, i) ≡ (z[l, i, 1] := z[l, i, 1] ∗ abs(z[s, l, 2])) {scm s
(li0)
:00 }

In the following, some compound (non elementary) stochastic arithmetical
processes are presented, including the related complexity analysis. Two synchro-
nized processors, identified by the expressions m(l,i) and s(l,i), are associated to
each memory position (l, i). The elementary processes presented in Table 1 have
unitary costs (cst = 1uct). For example, cst(ad m(l,m, n, i, j, k)) = 1, since the
action ad m is allocated to the processor m(l,i), and cst(ad s(l,m, n, i, j, k)) = 1,
since the action ad s is allocated to the processor s(l,i).

1. ad(l,m, n, i, j, k) ≡ (ad m(l,m, n, i, j, k) ‖ ad s(l,m, n, i, j, k))
This expression denotes the sum of stochastic numbers (see Eq. 2.1), labelled by
positions (m, j) and (n, k), with the result placed in the (l, i) position. The sum
of the mean value and the standard deviation is performed in parallel at 1uct. Its
interpretation xi ∈ D→

∞ can be achieved from the expression:

xi = {ad m(li0)
10:00, ad s(li1)10:00} = F(10)({ad m(li0)

10:00} ⊓ {ad s(li1)10:00}).
The process ad has unitary cost because both processes ad m and ad s, which are
performed by different processors in a synchronized way, have unitary costs. Anal-
ogous expressions can be obtained using symmetric stochastic numbers:
ad sy(l, m, n, i, j, k) ≡ (ad sy m(l, m, n, i, j, k) ‖ ad sy s(l, m, n, i, j, k)).

2. (ad row(l,m, n, i) ≡ (ad(l,m, n, i, i, i) ‖ ad row(l,m, n, i− 1)
The expression W = ad row(l,m, n, 0) ∈ L(D→

∞) represents a process that syn-
chronously, performs the addition of the sequence of stochastic numbers stored in
the m-th and n-th rows, and assigns the result to the corresponding positions in

The Stochastic Geometric Machine Model 315

the l-th row, in 1uct. Its interpretation is obtained by the subset

x = {ad m(li0)
10:00, ad s(li1)10:00}i∈ω.

Thus, x is the least fixed point of the equation xn+1 = F(10)(xn ⊓ x0) ∈ D→
∞.

Let P = {m(l,i),m(l,i+1), . . . , s(l,i), s(l,i+1), . . .} be a denumerable set of processors.
The process ad row, which is performed by pairs of processors in the the set P in a
synchronized way, has unitary cost.
The corresponding operation performed over S+ is given by the expression:
ad sy row(l,m, n, i) ≡ (ad sy(l,m, n, i, i, i) ‖ ad sy row(l,m, n, i− 1).

3. In the sum of stochastic numbers in the first i-th rows and l-th columns:
Ad row(l, 0) ≡ skip, Ad row(l, i) ≡ (ad(l, l, l, i − 1, i, i − 1); Ad row(l, i − 1))

Ad Row(l, 0) ≡ skip, Ad Row(l, i) ≡ (Ad Row(l − 1, i); Ad row(l, i)),

the number of elementary operations either in synchronized or sequential way is the
same (2il+ l), but with different performances, according to the number of proces-
sors involved. In the former case, with il processors, the cost function gives lutc,
and, in the later case, using two processors, the complexity is given by a polynomial
of third order. The language is flexible enough to allow to substitute the symbol
“‖” for the symbol “;” whenever one decides to work with either synchronized or
sequential computations (in this case, with a least number of processors).

4. Similar analysis can be done for the extended symmetric stochastic addition:
add(l, m, n, i, j, k) ≡ z(l, i, 1) := (sg(z(m, j, 1)) ∗ z(m, j, 1)2 + sg(z(n, k, 1)) ∗ z(n, k, 1)2)

abs add(l, m, n, i, j, k) ≡ (z(l, i, 1) := (abs(add(l, m, n, i, j, k))))

ex ad(l, m, n, i, j, k) ≡ z(l, i, 1) := (sg(abs add(l, m, n, i, j, k)) ∗ sqrt(abs add(l, m, n, i, j, k)))

and for the scalar multiplication over the stochastic numbers. In the last case, P is
a recursive process performing the scalar multiplication over the stochastic numbers
placed in the first l-th columns of the i-th row, simultaneously:
P = z(l, i, 2) := α; scm row(l, i) := (scm m(l, i) ‖ scm s(l, i)) ‖ scm row(l, i − 1).

5. Conclusion and further works

The ordered structure of the SGM provides domain theoretic semantics for com-
pound (non elementary) sequential algorithms with operations of the Stochastic
Arithmetic. In this work, we take use of the linear operator F(10) to obtain the
related compound parallel processes performed over array structures of stochas-
tic numbers, in a synchronous approach. We introduced a connection between
syntax and domain-theoretic semantics of parallel stochastic algorithms related to
the stochastic arithmetic operation. The complexity analysis of sample operations
and algorithms made clear the adequacy of the chosen representation of stochastic
numbers in the memory of the SGM, and the performance benefit of the parallel
structuring of stochastic arithmetic programs.

Resumo. Apresenta-se a versão estocástica da Máquina Geométrica, capaz de
interpretar computações sequenciais, paralelas (śıncronas) e não determińısticas,

316 Reiser, Dimuro and Costa

considerando uma memória compartilhada (posssivelmente infinita). A linguagem
de programação L(D→

∞
), induzida pelo espaço coerente de processos D→

∞
, pode ser

aplicada sobre produtos sequenciais e paralelos, para prover definições recursivas de
processos estocásticos e uma semântica denotacional para a Aritmética Estocástica.
São analisadas a recursão espacial (ou ordinal) relacionada com a modelagem es-
pacial da memória, e a recursão temporal (ou estrutural) obtida pela relação de
inclusão modelando objetos parciais na estrutura do modelo. O estudo da com-
plexidade de algumas operações e algoritmos aritméticos estocásticos mostrou a
adequação da representação escolhida para os números estocásticos, assim como as
vantagens da estruturação paralela de programas de aritmética estocástica.

References

[1] G.P. Dimuro, A.C.R. Costa and D.M. Claudio, A Coherence Space of Rational
Intervals for a Construction of IR, Reliable Computing, 6, No. 2 (2000), 139-
178.

[2] J. -Y. Girard, Linear Logic, Theoretical Computer Science, 1 (1987), 187-212.

[3] S. Markov, On the Algebraic Properties of Intervals and Some Applications,
Reliable Computing, 7, No. 2 (2001), 113-127.

[4] S. Markov and R. Alt, Stochastic Arithmetic: Addition and Multiplication by
Scalars, Applied and Numerical Mathematics, 50 (2004), 475-488.

[5] R.E. Moore, “Methods and Applications of Interval Analysis”, SIAM, 1979.

[6] R.H.S. Reiser, A.C.R. Costa and G.P. Dimuro, First steps in the construction
of the Geometric Machine, em “Seleta do XXIV CNMAC” (E.X.L. de Andrade,
J.M. Balthazar, S.M. Gomes, G.N. Silva and A. Sri Ranga, eds.), Tendências
em Matemática Aplicada e Computacional, Vol. 3, pp. 183-192, SBMAC, 2002.

[7] R.H.S. Reiser, A.C.R. Costa and G.P. Dimuro, A programming language for the
Interval Geometric Machine, Electronic Notes in Theoretical Computer Science,
84 (2003), 1-12.

[8] R.H.S. Reiser, G. P. Dimuro and AC. R. Costa, The Interval Geometric Ma-
chine Model, Numerical Algorithms, 37, No. 4 (2004), 357-366.

[9] D. Scott, Some definitional suggestions for automata theory, Journal of Com-
puter and System Sciences, 1, No. 1 (1967), 187-212.

[10] V. Stoltenberg-Hansen, I. Lindström and E. R. Griffor, “Mathematical Theory
of Domains”, Cambridge University Press, Cambridge, 1994.

