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ABSTRACT. Due to recent advances in genetic manipulation, transgenic mosquitoes can be a viable alter-
native to reduce some diseases. Viability conditions are obtained by the simulation and analysis of mathe-
matical models that describe the behavior of wild and transgenic mosquitoes population living in the same
geographic area. In this work, we present a reaction-diffusion model with a nonlinear reaction term, a func-
tion that describes the interaction between wild and transgenic mosquitoes taking into account their zygos-
ity. The diffusive term represents a uniform spatial spread characterized by a fixed diffusion parameter. The
system of partial differential equations obtained is solved numerically by combining a implicit Runge-Kutta
method and finite elements method, through the sequential operator splitting technique. Several scenarios
are analyzed, simulating the spatial release of transgenic mosquitoes, and lead to an understanding of an
intrinsic relationship between the transgenic and wild varieties for different initial conditions.

Keywords: mathematical model, operator splitting, genetically modified mosquito.

1 INTRODUCTION

Vector-borne diseases have always been a big preoccupation for populations and government
authorities in tropical countries, especially in those with low human development rates. The
combination of a favorable climate and intensive agriculture, associated with deforestation and
poor sanitation conditions, provide ideal environmental conditions for the proliferation of many
species of vectors responsible for the transmission of several diseases that affect the people of
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these regions. Due to the acceleration of global warming, especially in the last decade, this con-
cern has extended to regions beyond the tropics, making many of these diseases a focus of world
attention [20].

According to the World Health Organization [22], about 17% of the global population suf-
fers from infectious diseases transmitted by mosquitoes, malaria being the most known and
deadly disease. In 2016, 91 countries reported a total of 216 million malaria cases, resulting
in 445.000 deaths, approximately the same number reported in 2015 with 395.000 deaths [21].
However, among vector-borne diseases, the incidence of dengue is the fastest growing in the
world, with a 30-fold increase in the last 50 years. In addition to malaria and dengue, yellow
fever, chikungunya, zika and others are also stand out.

Recent advances in the genetic manipulation of mosquitoes, in particular, Aedes spp. and Anophe-
les ssp., aim at new approaches to control vector-borne diseases. In this way, the use of genetically
modified mosquitoes can be a viable alternative for the control of mosquito-borne infections,
acting together with prophylaxis, vaccines, insecticides and medicines.

Genetically modified mosquitoes refractory to malaria were first obtained in 2002, using a tech-
nique developed by Catteruccia et al. [1]. To obtain them, the scientists developed two different
types of Anopheles stephensi using the CP (carboxypeptidase) promoter: one of them expressing
peptide SM1 (salivary gland and midgut binding peptide 1) [10] and the other expressing the
enzyme PLA2 (phospholipase A2), present in bee venom [16]. These new insects must interact
with wild mosquitoes by mating and spreading the gene that determines the interruption of the
transmission process.

In 2015, Gants et al. and Bier et al. [5] developed a method based on the self-propagating
CRISPR/Cas9 genome-editing technology that converts heterozygous mutations to homozy-
gotes. This mechanism of artificial activation, called mutagenic chain reaction (MCR), was tested
for Drosophila melanogaster with a satisfactory level of 97%. Gantz et al. [6] and Noble et
al. [18] proved to be efficient for A. stephensi, although results obtained by mating between
transgenic males and wild-type females were more efficient than mating results between wild
males and transgenic females.

The modeling of the dynamics conducting the interaction between wild and transgenic
mosquitoes has been studied ever since. Mathematical and computational models can be found
in the literature, highlighting the works developed by Li et al. [12], Diaz et al. [8] and Wyse et
al. [24]. In 2004, Li et al. [12] presenting a discrete model that considered the interaction be-
tween two varieties of mosquitoes: wild and transgenic, without distinction of zygosity; in this
model the genetic mutation was considered without reduction or favoritism in the vital rates of
the mosquitoes. The rates of birth and mortality were considered dependent of density and two
situations were analyzed: constant mating rate and mating rate proportional to the total popula-
tion. A continuous-time version, described by a system of ordinary differential equations, was
obtained by Li et al. in [13]. A functional response type Holling II and the Alee effect in wild
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and transgenic populations was considered in this model. A continuous time model with zygosity
distinction was also proposed by Wyse et al. in [23].

The fitness of wild and transgenic mosquitoes was considered in the model of Diaz et al. [8].
This model, in continuous time, also took into account the zygosity of transgenic mosquitoes.
A discrete time model, without distinction of zygosity, taking into account the horizontal and
vertical transmission of a genetically modified bacterium was proposed by Li in [14], assuming
horizontal transmission depends on the mating between wild mosquitoes and those that have
mutated due to contact with the bacteria.

In this paper, a mathematical model that describes the interaction dynamics through mating be-
tween transgenic and wild mosquitoes is investigated, as well as the dissemination of the trans-
gene that determines the interruption of an epidemiological process. For this, the transgenic
mosquitoes are differentiated according to their zygosity, being heterozygous or homozygous.
The interaction between mosquitoes describes a density dependency for vital rates and imposes
a maximum limit of population growth that occurs from the carrying capacity. The diffusion is
represented by Fick’s law, with the fixed diffusion coefficient. Thus, the mathematical model ob-
tained is a non-linear diffusion-reaction system. The resulting system is solved numerically by
the operator splitting method, which is well known in solving problems resulting in large systems
of partial differential equations, as well as problems involving nonlinear chemical reactions [2],
mosquito dispersion [3, 24] and non-linear applications of Schrodinger [19].

In section 2, the mathematical model that describes the population dynamics resulting from the
introduction of genetically modified mosquitoes in wild populations is presented. The proposed
mathematical model is based on strategies aimed at genetically modified mosquitoes that are
designed to have a reduced transmission capacity of a given infectious agent. They are also
fertile and able to propagate and perpetuate their hereditary trait in the wild mosquito population.
In section 3, the methodology used to obtain the numerical solution is shown, and consists in
the technique of decomposition of operators. The fourth order Runge-Kutta method is used for
the dynamic problem and the finite element method is used for the spatial problem. Section 4
contemplates the numerical results obtained from different initial conditions. Finally, in section
5 there is a brief discussion and some suggestions for future investigations are pointed out.

2 MATHEMATICAL MODELING OF MOSQUITO DISPERSAL

The mathematical model presented is based on the Fisher-KPP equation [4, 11], assuming that
the populations have the same fitness, according to studies on A. stephensi [17], which ensures
to the mosquitoes the reproductive success and adaptations to the environment wild, with com-
petitive ability. Each individual progresses and emerges in adulthood at a net rate and leaves due
to mortality. To obtain the reaction terms, we consider the population dynamics of mosquitoes
governed by the logistic equation with capture:

dN
dt

= γN
(

1− N
C

)
−δ2N, (2.1)

Tend. Mat. Apl. Comput., 21, N. 3 (2020)
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where N is the total population of adult females, γ = ε−δ1 is the net inflow rate of mosquitoes
into adulthood, where ε is the entry rate and δ1 is the death rate. In addition to δ1, there is also
a mortality rate δ2, independent of density, introduced in order to take into account other factors
inducing mortality that keeps the population stabilized at a level below the support capacity C .
Thus, equation (2.1) can be written in the equivalent form:

dN
dt

= εN−
(

γ

C

)
N2− (δ1 +δ2)N =

(
ε

N
− γ

C

)
N2−δN, (2.2)

where δ = δ1 +δ2.

Assuming that the total population is composed of wild mosquitoes (u1), heterozygous
transgenics (u2) and homozygous transgenics (u3), so that N = ∑ui, and holds:

d(∑ui)

dt
=

(
ε

∑ui
− γ

C

)(
∑ui

)2−δ ∑ui. (2.3)

As mosquitoes are diploid organisms, it can establish the genotype of wild mosquitoes as (w,w)
and the genotype of the homozygous transgenic mosquitoes as (g,g). Denote by ai j, bi j and ci j

the genotypic frequencies for u1, u2 and u3 obtained from mating ui× u j , i, j = 1,2,3. These
coefficients satisfy the relation ai j +bi j + ci j = 1.

The Table 1 synthesizes the wild-type mosquito populations (w,w), homozygous transgenic (g,g)
and heterozygous (w,g) after the crosses.

Table 1: Genotypic frequencies obtained from crosses between wild, heterozygous and
homozygous mosquitoes.

XXXXXXXXXXXXGenotype
Crossing

u1×u1 u1×u2 u1×u3 u2×u2 u2×u3 u3×u3

(w,w) a11 a12 a13 a22 a23 a33

(w,g) b11 b12 b13 b22 b23 b33

(g,g) c11 c12 c13 c22 c23 c33

Given ai j,bi j,ci j,ε,γ,C,δ ,κ ∈R, the problem is to find ui(x, t)∈R for all x∈Ω and t > t0 ∈R+

through the resolution of the following reaction-diffusion system:

∂u1

∂ t
= κ

∂ 2u1

∂x2 +

(
ε

∑ui
− γ

C

)
∑∑ai juiu j−δu1,

∂u2

∂ t
= κ

∂ 2u2

∂x2 +

(
ε

∑ui
− γ

C

)
∑∑bi juiu j−δu2,

∂u3

∂ t
= κ

∂ 2u3

∂x2 +

(
ε

∑ui
− γ

C

)
∑∑ci juiu j−δu3,

(2.4)

with Dirichlet contour conditions given by

ui(x0, t) = ui0, ui(xL, t) = uiL, (2.5)

Tend. Mat. Apl. Comput., 21, N. 3 (2020)
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and initial conditions
ui(x, t0) = ui(x), (2.6)

where t0 ∈ R+ is the initial time instant and κ is the fixed diffusion coefficient since there is no
evidence of flight alteration caused by genetic manipulation of this species.

3 NUMERICAL FORMULATION

In this section, the focus is on the development of discrete formulations and applications of com-
putational techniques to numerically solve the proposed model. For this, it is used a technique of
sequential operator splitting [7] to dissociate the original system into another equivalent, formed
by a combination of two subsystems that fall into problems of less complexity. Taking advan-
tage of the fact that the structure of the reaction-diffusion models allows a natural decomposition
of the equations, thus providing the opportunity to apply schemes of operator splitting. Thus,
it becomes possible to separately handle each of the systems and solve each problem with the
numerical method that best fits the nature of the operator involved.

To describe the algorithm, it is necessary to proceed with the decomposition of the system (2.4)
into two problems: a system of partial differential equations with the purely diffusive term, and
the other of nonlinear ordinary differential equations, associated to the purely reactive term. To
solve the diffusive problem let us use the finite element method with an implicit finite difference
scheme of the type Crank-Nicolson and Euler. To solve the second system, which is nonlinear,
let us the fourth-order Runge-Kutta method.

Let us denote Ω≡ (0,L) the spatial domain and I≡ (0,T ) the time interval of interest, with T > 0
the final time. By introducing the time discretization [0,T ] =

⋃N
n=0[tn, tn+1], with Itn = [tn, tn+1] a

partition of I,N = T/∆t the number of partitions and ∆t = tn+1−tn a time step, which we consider
uniform. With this, follow the steps:

Step 1: For the initial time, t = t0, initialize the variables ûi(x, t0) = gi(x), for each i = 1,2,3,
being gi(x) the initial condition given.

Step 2: For a fixed n, n ≥ 0, given the initial conditions ũi(x, tn), calculate ũi(x, t) at time tn+1

through the following problem:

Problem A: Given D ∈ R, find ũi(x, t) ∈ R, with x ∈Ω and t ∈ In satisfying the system:

∂ ũi(x, t)
∂ t

= κ
∂ 2ũi(x, t)

∂x2 , (3.1)

with boundary conditions

ũi(0, tn) = ui0, ũi(L, tn) = uiL, (3.2)

and initial conditions

ũi(x, tn) = ui(tn). (3.3)

Tend. Mat. Apl. Comput., 21, N. 3 (2020)
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Step 3: In the same time interval Itn , use the solution of Problem A, given by the previous step,
as the initial condition for calculating the solution of the system of coupled nonlinear ordinary
differential equations associated with the model (2.4), expressed by the following problem:

Problem B: Given {ai j,bi j,ci j,γ,C,ε,δ} ∈ R , find ui(t) ∈ R , with t ∈ Itn , satisfying the
system: 

du1

dt
=

(
ε

∑ui
− γ

C

)
∑∑ai juiu j−δu1,

du2

dt
=

(
ε

∑ui
− γ

C

)
∑∑bi juiu j−δu2,

du3

dt
=

(
ε

∑ui
− γ

C

)
∑∑ci juiu j−δu3,

(3.4)

with initial conditions

ui(tn) = ũi(x, tn+1), (3.5)

where ũi(x, tn+1) are the solutions obtained from Problem A.

Step 4: The solution of Problem B is the approximate solution of the model at time tn+1 ∈ Itn ⊂ I.
If tn+1 < T , increments n, returns to Step 2 and repeats the process until equality occurs.

For the resolution of Problem A, a finite element method approach is used. For this, consider U =

{ui(x, t) ∈ H1(Ω) | ui(0, t) = ui0;ui(L, t) = uiL} and V = H1
0 (Ω), a Sobolev space and a Hilbert

space, respectively. The spatial domain is discretized using a uniform finite element partition
consisting of ne elements Ωe, such that Ω=

⋃ne
n=1 Ωe and

⋂ne
n=1 Ωe = /0. This choice is to construct

Uh = {uh(x, t) ∈C0(Ω) | uh(0) = uh(L) = 0,∀uh(Ωe) ∈ P̂(Ωe)} ⊂U and Vh ⊂ V , where P̂(Ωe)

are Lagrange polynomials.

Consider the Problem (Ah): Let ũh
i (x, t) ∈Uh, (i = 1,2,3), t ∈ In, such that:∫ L

0

∂ ũh
i

∂ t
vhdx+D

∫ L

0

∂ ũh
i

∂x
∂vh

∂x
dx = 0, ∀vh ∈Vh, (3.6)

with initial conditions given by
ũh

i (x, tn) = ûi(tn+1). (3.7)

To solve this problem, a transient algorithm is required to obtain the numerical solution of
the semi-discrete problem. For this, take the approximation at a time t as follows: ũh

i (x, t) =
∑

np
j=1(ũi) jϕ j(x) and vh(x, t) = ∑

np
j=1 ϕ j(x) to construct the interpolation functions in finite ele-

ments, respectively, where np is the total number of freedom degrees and ϕ j(x) are the global
form functions. Thus, the problem (Ah) leads to the following system of ordinary differential
equations:

np

∑
j=1

[
Mi j

dũ j

dt
+Ki jũ

]
= 0, t ∈ I; 1≤ i≤ np, (3.8)

ũi(0) = ûi(x),

Tend. Mat. Apl. Comput., 21, N. 3 (2020)



i
i

“A7-1338-7782” — 2020/11/6 — 10:32 — page 511 — #7 i
i

i
i

i
i

LIMA, WYSE, SANTOS and CARDOSO 511

where

Mi j =
∫

Ωe

ϕi(x)ϕ j(x)dΩe, (3.9)

Ki j =
∫

Ωe

Dϕ
′
i (x)ϕ

′
j(x)dΩe, (3.10)

which can be written in the following matrix form as:

M ˙̃u(t)+Kũ(t) = 0, (3.11)

ũ(tn) = û(tn+1).

To solve this system numerically, it is enough to use the transient algorithm, based on the
generalized family of trapezoidal methods [9]:

(M+α∆tK)un+1 = (M− (1−α)∆tK)un, (3.12)

for α = 0, α = 0,5 or α = 1 it has, respectively, the methods of Forward Euler, Crank-Nicolson
or Backward Euler.

In relation to Problem B given by the system of ordinary differential equations (3.4), use the
fourth order Runge-Kutta method.

4 NUMERICAL SIMULATIONS

In this section, the obtained results are reported when applying computational techniques to
numerically solve the proposed reaction-diffusion model. It is an analysis of the behavior of the
three mosquito varieties in different scenarios, considering Mendelian (as SM1 mutation [16])).

Three situations are considered for numerical experiments, as well as population dynamics with
different initial conditions:

• The first experiment attempts to establish a correlation with a controlled laboratory ex-
periment described by Moreira et al. [16]. It considers an identical initial quantitative
for the population of wild mosquitoes and heterozygous transgenic mosquitoes, releasing
heterozygous transgenic mosquitoes closer to the wild mosquitoes.

• The second experiment establish different mosquitoes release scenarios to establish the
most effective release strategies. It considers the release of mosquitoes into two distinct re-
gions of the domain. In practice, this idea consists of identifying the main outbreaks of wild
mosquitoes, locating them on the integration domain and inserting transgenic mosquitoes
into these identified regions.

• The third experiment considers an initial conditions analogous to the first experiment, but
with the initial population composed only of wild mosquitoes and homozygous transgenic.
The population of heterozygous mosquitoes will initially be null, and it will emerge from
the mating process among the varieties considered.

Tend. Mat. Apl. Comput., 21, N. 3 (2020)
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In all experiments, it was considered that mosquitoes occupy a spatial region Id = [0,10], mea-
sured in km, whose propagation starts from the release of mosquitoes and it has a duration of four
weeks, It = [0,4]. These intervals are large enough for populations to diffuse without reaching
the extremes of this range, which would lead to a spontaneous loss of mosquitoes as a function
of zero contour conditions.

All the parameters used in the numerical simulations are in Tables 2 and 3.

Table 2: Model parameters estimated from literature data [15, 25].

Parameter Description Value
κ Coefficient of diffusion (km2/week) 5.10−3

ε Emergence rate to the adult stage 8.11
δ1 Density-dependent mortality rate 4.0
δ2 Density-independent mortality rate 2.54
C Support capacity 262.0

Table 3: Genotypic frequencies considering Mendelian inheritance.

Frequency a11 a12 a13 a22 a23 a33

Mendelian 1.0 0.5 0.0 0.25 0.0 0.0
Frequency b11 b12 b13 b22 b23 b33

Mendelian 0.0 0.5 1.0 0.5 0.5 0.0
Frequency c11 c12 c13 c22 c23 c33

Mendelian 0.0 0.0 0.0 0.25 0.5 1.0

It was arbitrarily adopted the diffusion coefficient κ , based on the fact that the flight range of
the mosquitoes is small, since Anopheles spp. acts in the intra and peridomestic. As there are no
reports that indicate the effects of genetic manipulation on the flight mode of mosquitoes, so it
was considered the same value of κ for the three varieties considered.

4.1 Release of heterozygous into a wild mosquito focus

In these simulations will be considered an initial quantitative identical for the population of wild
mosquitoes and heterozygous transgenic mosquitoes, distributed over the range Ω = [0,10] in
two distinct ways: in the first, it will simulate the behavior of populations when it is released
heterozygous transgenic mosquitoes in a focus of wild mosquitoes; in the second it will simulate
this behavior when it is released heterozygous transgenic mosquitoes in a region where the wild
population is homogeneously distributed.

u1(0) = u2(0) =

{ ∫ 5.5
4.5 10

(
sin
(
π
( x−4.5

5.5−4.5

)))100
if 4.5≤ x≤ 5.5,

0 if 0≤ x≤ 4.5 and 5.5≤ x≤ 10.
(4.1)

u3(0) = 0. (4.2)

Tend. Mat. Apl. Comput., 21, N. 3 (2020)
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Initially, it will verify the dynamic behaviour of the three interacting populations. In Figure 1, the
initial populations of equally distributed heterozygous wild and transgenic mosquitoes were con-
sidered and the initial population of homozygous transgenes was equal to zero. These conditions
correspond to the laboratory test performed by Moreira et al. [16], resulting in a stabilization
of the population with 56% of wild mosquitoes and 44% of transgenic mosquitoes, ratified by
the Hardy - Weinberg equilibrium. In this simulation, no transgenic homozygous individual was
released, but it arises naturally from the mating process. The initial conditions used for the wild,
heterozygous and homozygous transgenic populations were u1(0) = u2(0)≈ 0,8 and u3(0) = 0,
obtained from (4.1) and (4.2).

0 1 2 3 4 5 6 7 8 9 10

t
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20

30

40

50

60

(u
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u
3
)

Population Dynamics - (u
1
, u

2
, u

3
)

u
1
(t)

u
2
(t)

u
3
(t)

Figure 1: Population of wild mosquitoes, heterozygous and homozygous transgenic with initial
conditions (4.1) and (4.2).

In Figure 2, the system (2.4) was simulated satisfying Dirichlet boundary conditions and initial
conditions (4.3) and (4.4). These conditions are quantitatively equivalent to those used in the
simulation of Figure 1. However, this quantity was distributed along the spatial domain. This
situation represents the introduction of heterozygous transgenic mosquitoes into a wild mosquito
focus, located at the center of the integration domain.

u1(x,0) = u2(x,0) =

{
10
(
sin
(
π
( x−4.5

5.5−4.5

)))100
if 4.5≤ x≤ 5.5,

0 if 0≤ x≤ 4.5 and 5.5≤ x≤ 10.
(4.3)

u3(x,0) = 0. (4.4)

Tend. Mat. Apl. Comput., 21, N. 3 (2020)
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The amount of mosquitoes obtained at the end of the process results from the integration on the
domain Ω of the function obtained in the final time t = 4. There is no analytic expression for this
function, since the curve obtained in t = 4 comes from a numerical resolution method. The value
of this integral was obtained by applying the trapezoid rule, where we obtain u1(4) = 44.2654,
u2(4)= 29.5103 and u3(4)= 4.9184. These values correspond to 56.25% of wild mosquitoes and
43.75% of transgenic (heterozygous and homozygous) mosquitoes, approximately the situation
obtained when populations stabilized in Figure 1.

(a) (b) (c)

Figure 2: Population of wild mosquitoes (a), heterozygous transgenics (b) and homozygous (c)
with Dirichlet boundary conditions and initial conditions (4.3) and (4.4).

4.2 Release of wild and transgenic heterozygous mosquitoes in two positions

In this section, the release of mosquitoes into two distinct regions of the Ω domain it will be
considered. In practice, this idea consists of identifying the main outbreaks of wild mosquitoes,
locating them on the integration domain and inserting transgenic mosquitoes into these identified
regions.

In Figure 3, initial populations of wild mosquitoes and heterozygous transgenic mosquitoes of
the same size and spatial distribution, both with higher density in the positions x = 4.75 and
x = 6.25 were considered. In field conditions, this could be done by identifying two regions
with the highest incidence of wild mosquitoes, locating this region in the integration interval and
releasing an equivalent amount of heterozygous transgenic mosquitoes at this local.

u1(x,0) = u2(x,0) =


(
sin
(
π
( x−5.75

6.75−5.75

)))100
if 5.75≤ x≤ 6.75,(

sin
(
π
( x−4.25

5.25−4.25

)))100
if 4.25≤ x≤ 5.25,

0 if 0≤ x≤ 4.25 and 6.75≤ x≤ 10.

(4.5)

u3(x,0) = 0. (4.6)

Tend. Mat. Apl. Comput., 21, N. 3 (2020)
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(a) (b) (c)

Figure 3: Population of wild mosquitoes (a), heterozygous transgenics (b) and homozygous (c)
with Dirichlet boundary conditions and initial conditions (4.5) and (4.6).

4.3 Release of wild mosquitoes and homozygous transgenics

In this section, it will consider the initial population composed only of wild mosquitoes and
homozygous transgenic. The population of heterozygous mosquitoes will initially be null, but it
will emerge from the mating process among the varieties considered. All simulations presented
in this section will have initial conditions analogous to those in subsection 4.1, only inserting
homozygous transgenic instead of heterozygous.

Figure 4 shows the numerical simulation of the dynamics involving wild and transgenic
mosquitoes, with initial conditions given by

u1(0) = u3(0) =

{ ∫ 5.5
4.5 10

(
sin
(
π
( x−4.5

5.5−4.5

)))100
if 4.5≤ x≤ 5.5,

0 if 0≤ x≤ 4.5 and 5.5≤ x≤ 10.
(4.7)

u2(0) = 0. (4.8)

In this simulation the curves that representing the populations of wild and transgenic homozygous
mosquitoes are superimposed. It is not actually possible to see it that populations of wild and
transgenic homozygotes mosquitoes stabilized at the same level. Corresponding to 25% of the
total population of wild mosquitoes, 25% of homozygous transgenic mosquitoes and 50% of
heterozygous transgenic mosquitoes.

In Figure 5 the system (2.4) was simulated satisfying Dirichlet boundary conditions and initial
conditions 4.9) and (4.10). These conditions represent an introduction of homozygous transgenic
mosquitoes into a focus of wild mosquitoes, with the highest concentration located at the center
of the integration range. The amount of homozygous transgenic mosquitoes introduced is equal
to that observed for wild mosquitoes.

The value obtained for the density of each population at the end of integration, obtained by
the trapezoid rule, is u1(4) = 19.6735, u2(4) = 39.3471 and u3(4) = 19.6735. The proportions
obtained are consistent with those obtained in Figure 4.

Tend. Mat. Apl. Comput., 21, N. 3 (2020)



i
i

“A7-1338-7782” — 2020/11/6 — 10:32 — page 516 — #12 i
i

i
i

i
i

516 REACTION-DIFFUSION MODEL APPLIED TO THE POPULATION DYNAMICS OF MOSQUITOES

0 1 2 3 4 5 6 7 8 9 10

t

0

10

20

30

40

50

60

(u
1
, 

u
2
, 

u
3
)

Population Dynamics - (u
1
, u

2
, u

3
)

u
1
(t)

u
2
(t)

u
3
(t)

Figure 4: Population of wild mosquitoes, heterozygous transgenic and homozygous with initial
conditions (4.7) and (4.8).

u1(x,0) = u3(x,0) =

{
10
(
sin
(
π
( x−4.5

5.5−4.5

)))100
if 4.5≤ x≤ 5.5,

0 if 0≤ x≤ 4,5 and 5,5≤ x≤ 10.
(4.9)

u2(x,0) = 0. (4.10)

(a) (b) (c)

Figure 5: Population of wild mosquitoes (a), heterozygous transgenic (b) and homozygous (c)
with Dirichlet boundary conditions and initial conditions (4.9) and (4.10).
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5 CONCLUSION

In this article, the development of a mathematical model that describes the interaction between
wild and transgenic mosquitoes is presented, taking into account zygosity, considering all pop-
ulations in absolute numbers and admitting a fixed diffusion coefficient. These characteristics
make the description of the model more realistic, ensuring the existence of all possible pheno-
types, preserving the parameters that do not exist in the dimensionless form and allowing to the
mosquitoes the same vital rates and capacity of uniform displacement.

The dynamic system was developed to preserve the peculiarities of the species and to avoid
overlapping of individuals when the transgenics are inserted, respecting the support capacity of
the environment. The terms of the dynamic system related to the mating and competition for
resources implied in the nonlinearity of this system, which is characteristic of the great majority
of population dynamics models. The diffusion term, based on Fick’s law, describes a symmetrical
spread of the mosquito’s population as a Gaussian process.

The solution of the proposed problem was obtained using the operator splitting method to decou-
ple the reaction-diffusion system into two subproblems. The diffusive problem was solved using
the finite element method and the reactive problem using the Runge - Kutta method fourth or-
der. The low computational cost, easy of implementation and the history of good results already
obtained in the modeling of chemical reactions encouraged us to adopt this procedure.

The results shown are consistent with the expected behavior, indicating a constant presence of
transgenic mosquitoes after entering into the ecosystem and reducing the costs of periodic inser-
tion. Without the superiority of transgenics, the total elimination of wild mosquitoes is impossible
to achieve, since they are also obtained from the mating between the heterozygous transgenics.
It is worth mentioning that the extinction of a species should not be the main objective, it is suf-
ficient that the population of wild mosquitoes is reduced to levels that are not harmful to human
health.

The proposed model with adequate epidemiological dynamics is able to study the impact of the
reduction of infectious diseases transmitted by mosquitoes. By identifying an effective breeding
site, it is possible to devise an optimal strategy for the release of transgenic mosquitoes.

This is an initial study that opens possibilities for future investigations. Initial conditions more
adequate to reality need to be tested to obtain a strategy for the release of transgenic insects in the
environment, by means of genetic algorithms, for example, in mono and multiobjective versions,
considering factors such as seasonality, temperature, and rainfall.

RESUMO. Devido aos progressos recentes na manipulação genética, os mosquitos
transgênicos podem ser uma alternativa viável para reduzir algumas doenças. Condições de
viabilidade são obtidas pela simulacção e análise de modelos matemáticos que descrevem
o comportamento de populações de mosquitos selvagens e transgênicos convivendo em
uma mesma área geográfica. Neste trabalho, apresentamos um modelo de reação-difusão
com um termo de reação não linear, uma função que descreve a interação entre mosquitos
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selvagens e transgênicos, levando em consideração sua zigosidade. O termo difusivo repre-
senta uma dispersão espacial uniforme caracterizada por um parâmetro de difusão fixo. O
sistema de equações diferenciais parciais obtidas é resolvido numericamente combinando
um método implı́cito de Runge-Kutta e um método de elementos finitos, através da técnica
de divisão sequencial de operadores. Vários cenários são analisados, simulando a liberação
espacial de mosquitos transgênicos, e levam ao entendimento de uma relação intrı́nseca
entre as variedades transgênica e selvagem para diferentes condições iniciais.

Palavras-chave: modelo matemático, decomposição de operadores, mosquitos genetica-
mente modificados.
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