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ABSTRACT. In recent years, a great effort has been taken focused on the development of reduced order
modeling techniques of dynamical systems. This necessity is pushed by the requirement for efficient numer-
ical techniques for simulations of dynamical systems arising from structural dynamics, controller design,
circuit simulation, fluid dynamics and micro electromechanical systems.

We introduce a method to calculate the minimum upper L2 error bound of a linear time invariant reduced or-
der model considering any possible unitary initial conditions (IC). As a consequence, the proposed method
calculates the unitary IC vector which leads to the maximum L2 norm of the error. Based on this error
bound, it is discussed the capacity of a reduced order system to approximate the free transient response in
the worst case scenario.

Keywords: Model reduction, dynamical systems, observability grammian, initial condition, error bound.

1 INTRODUCTION

Even with the advances in computer technology, which considerably increased computational
processing capacity and storage in the last decades, the demand for increasing the complexity
of dynamical systems is still a major concern. To handle this problem, a great effort is being
taken towards the development of methods to calculate reduced order models (ROM) that repro-
duce the main dynamic characteristics of a high order model (HOM) with a reduced demand on
computational processing capacity, memory and computing time [1, 2, 3, 6, 7, 11, 21].

The determination of error bounds associated with reduced models plays an important role in the
development of such Model Order Reduction (MOR) methods. It allows to predict the maximum
(or minimum) error associated to the lower order approximation without the need of performing
excessively time-demanding simulations. Furthermore, the a priori knowledge of error bounds
allows the comparison of different MOR methods and for consequence the selection of the most
suitable method to each application based on a prescribed threshold for the ROM error.
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198 AN ERROR BOUND FOR LOW ORDER APPROXIMATION OF DYN SYS SUBJECTED TO IC

In an early work, a method is proposed for MOR which guarantees an L2-optimal error bound
for the impulse response of Multi-Input-Multi-Output (MIMO) dynamical systems [26].

MOR methods based on modal truncation have advantages compared to other methods due to
the physical interpretation of the retained and eliminated eigenmodes, moreover it preserves the
original poles of the retained eigenmodes. In the literature one can find proposals of different
H∞-norm error bounds for different modal MOR methods [6, 25, 14].

Another approach to the error bound calculation of ROM is the approximation of the H2 and
H∞ norms for modal MOR methods, found in [12]. This work shows a selection criteria for the
eliminated eigenmodes based on the a priori aproximation of the error norms.

A selection criteria was proposed for the truncation of eigenmodes which minimizes the H2-
norm of the error associated to modal truncation method [23].

Methods to calculate the H2 and H∞ error norms for ROM in the balanced realization base are
presented in [13] and [1].

A method to compute the suboptimal H∞-norm error bound shows a suboptimal approach to the
task of minimizing the H∞-norm of the ROM error [19] and have advantages over other Hankel
optimal MOR techniques such as better lower error bounds.

A frequency weighted technique for balanced MOR was proposed by Imran et al. [16], which
also introduces a frequency weighted H∞-norm of the ROM error.

In a recent work, an error bound for the MOR of delay linear and nonlinear systems is proposed
[24]. This method also preserves the stability in the reduced order model.

The IC problem for nonlinear reduced order dynamical systems was obtained using the Center
Manifolds Method [8]. A method is proposed to calculate the initial conditions of the ROM based
on de IC of the HOM. Nevertheless, error bounds of the ROM response are not discussed in this
work.

Due to the importance of determining error bounds for a ROM, this work introduces a method
to calculate the minimum L2-error upper bound for the free transient IC response of a truncated
ROM. This upper bound measures the capability of the reduced system to reproduce the free
transient IC response of the HOM considering all possible unitary initial conditions, which rep-
resents the worst case scenario for this problem. The error bound is first presented regardless the
basis onto which the model is projected and than it is showed a specific case for the MOR based
on modal coordinates.

2 PROBLEM STATEMENT

Consider a linear, time-invariant, asymptotically stable, continuous-time, dynamical system
[A,B,C,D] in its minimal realization, with the following state space representation:

ẋ(t) = Ax(t)+Bu(t) y(t) = Cx(t)+Du(t) (2.1)

Tend. Mat. Apl. Comput., 19, N. 2 (2018)
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Where x(t) ∈Rn, u(t) ∈Rnu , y(t) ∈Rny are respectively the state vector, input vector and output
vector. Hence, n is the order (or state space dimension) of the system and A ∈ Rnxn, B ∈ Rnxnu ,
C ∈ Rnyxn and D ∈ Rnyxnu .

The initial state of the system in eq 2.1 is x(0) = x0 and the upperscore 0 in state vectors are
herein representing the initial sate (or the IC) of the corresponding system.

This system is herein called a high order dynamical system, or high order model (HOM) of order
n. It is intended to calculate a ROM [Ar,Br,Cr,Dr] of order nr ≤ n which is capable to reproduce
the overall dynamic behavior of the HOM.

ẋr(t) = Arxr(t)+Bru(t) yr(t) = Crxr(t)+Dru(t) (2.2)

Where xr ∈ Rnr , Ar ∈ Rnrxnr , B ∈ Rnrxnu , C ∈ Rnyxnr and D ∈ Rnyxnu and the initial state of this
system is xr(0) = x0

r .

Without loss of generality, the HOM can be partitioned onto the most dominant and less dominant
Degree of freedom (DOF) x1 ∈ Rnr and x2 ∈ Rn−nr respectively:

ẋ1

ẋ2

y

=

 A11 A12 B1

A21 A22 B2

C1 C2 D




x1

x2

u

 (2.3)

It is assumed that the most dominant and less dominant DOF are selected according to an arbi-
trary selection criterion. A detailed review and descritption of the less dominant DOF selection
criteria can be found at [1, 5, 18].

It is considered that the ROM is obtained by the truncation of the less dominant DOF vector x2.
Considering this, Ar = A11, Br = B1, Cr = C1 and Dr = D.

The system which describes the dynamics of the error e(t) = y(t)−yr(t) between the HOM and
ROM is [Ae,Be,Ce,De], which is:

ẋ1

ẋ2

ẋr

e

=


A11 A12 0 B1

A21 A22 0 B2

0 0 A11 B1

C1 C2 −C1 0




x1

x2

xr

u

 (2.4)

Where x̂ = {x1;x2;xr} is the state vector for the system in eq. 2.4 and Ae ∈ R(n+nr)x(n+nr). The
respective IC vector is x̂0 = {x0

1;x0
2;x0

r}.

The error function is herein defined as the L2 norm of the error vector e(t), represented by the
notation ‖e‖L2 . Where

‖e‖2
L2

=
∫

∞

0
eT (τ)e(τ)dτ (2.5)

is the norm in the function space L
ny

2 of Lebesgue integrable functions e : [0,∞)→ Rny .

Tend. Mat. Apl. Comput., 19, N. 2 (2018)
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200 AN ERROR BOUND FOR LOW ORDER APPROXIMATION OF DYN SYS SUBJECTED TO IC

Considering this, the intention of the following section is to determine the minimum ‖e‖L2 for
the free transient response of the ROM subjected to any possible initial conditions.

ε0 = max{‖e‖L2 | x̂0 ∈ Rn+nr ;u(t) = 0} (2.6)

3 A MINIMUM L2-ERROR UPPER BOUND FOR THE IC PROBLEM

The observability grammian Q of the system in eq. 2.4 can be calculated using the following
Lyapunov equation:

AT
e Q+QAe +CT

e Ce = 0 (3.1)

The observability grammian Q is symmetric positive semi-definite for asymptotically stable
systems and it can be partitioned as

Q =

 Q11 Q12 Q13

QT
12 Q22 Q23

QT
13 QT

23 Q33

 (3.2)

Where Q ∈ Rn+nrxn+nr , Q11 ∈ Rnrxnr and Q33 ∈ Rnrxnr .

Using the partitioned form in eq. 2.4 and substituting eq. 3.2 in eq. 3.1, the solution for the
observability grammian can be decoupled into 3 lower order Lyapunov equations:

AT

[
Q11 Q12

QT
12 Q22

]
+

[
Q11 Q12

QT
12 Q22

]
A+CT C = 0 (3.3)

AT
11

[
QT

13 QT
23

]
+
[

QT
13 QT

23

]
A−CT

1 C = 0 (3.4)

AT
11Q33 +Q33A11 +CT

1 C1 = 0 (3.5)

One can observe that the calculated blocks {{Q11,Q12};{Q21,Q22}} in eq. 3.3 corresponds to
the observability grammian of the HOM. Analogously, the block Q33 calculated in eq. 3.5 is the
observability grammian of the ROM.

Given a non trivial IC to the HOM x0 6= 0

x0 = {x0
1;x0

2} (3.6)

and the IC vector of the system in eq 2.4 is x̂0 = {x0
1;x0

2;x0
r}.

Considering that the ROM is obtained by the truncation of the least significant DOF of the HOM,
the IC vector of the ROM is consequently obtained by the truncation of the IC vector of the HOM:

x0
r = x0

1 (3.7)

From eq. 3.7, the IC vector of the system in eq 2.4 is x̂0 = {x0
1;x0

2;x0
1}.

It is considered that the error function ‖e‖L2 for the IC problem is:

‖e‖2
L2

=
∫

∞

0
eT (τ)e(τ)dτ = (x̂0)T Qx̂0 (3.8)

Tend. Mat. Apl. Comput., 19, N. 2 (2018)
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Substituting eq. 3.2 into eq. 3.8 and performing simbolic manipulation, the error funcion ‖e‖L2

can be calculated as

‖e‖2
L2

= (x0)T Qex0 = (x0)T

[
Q11 +Q13 +QT

13 +Q33 Q12 +QT
23

QT
12 +Q23 Q22

]
x0 (3.9)

From eq 3.9, the eq. 2.6 can be rewriten and the minimum upper bound ε0 of ‖e‖L2 for all
possible unitary initial conditions is:

ε0 = max{‖e‖L2 | x0 ∈ Rn;‖x0‖= 1;u(t) = 0} (3.10)

Considering that the solution of eq. 3.1 is positive semidefinite [17] with real nonnegative
eigenvalues, the solution of the eq. 3.10 is:

ε
2
0 = max

i
abs(λi(Qe)) = abs(λmax(Qe)) (3.11)

Where abs(λi(Qe)) is the absolute value of the i-th eigenvalue of Qe and λmax(Qe) is the largest
eigenvalue of Qe.

It is important to notice that the eigenvector associated to λmax(Qe) is the IC that maximizes the
error ‖e‖L2 . In other words, it is the scenario which the ROM provides the highest L2-error of
the free transient response to the IC problem.

3.1 Error bound due to initial conditions on modal coordinates

Modal methods intends to catch the behaviour of the dominant eigenmodes of the HOM into
the ROM. In order to do that, the state-space is projected on the subspace spanned by a set of
eigenvetors which are considered most dominant [10]. Different selection criteria to elect the
most dominant eigenvectors can be found in the literature [21, 25, 12, 15, 22].

Before the truncation of the less dominant states, the HOM can be projected onto an orthonormal
modal base [20]. Let us assume that the realization in eq. 2.1 is diagonalizable such that

ẇ(t) = Ãw(t)+ B̃u(t) y(t) = C̃w(t)+ D̃u(t) (3.12)

Where [Ã, B̃, C̃, D̃] is the HOM projected onto the modal basis and:

x(t) = Φw(t)
Ã = Φ−1AΦ = diag(λ1,λ2, . . . ,λn)

B̃ = Φ−1B
C̃ = CΦ

D̃ = D

(3.13)

Where w(t) is called modal coordinate vector and Φ and Ã are the eigenvector and eigenvelue
matrices respectively.

Tend. Mat. Apl. Comput., 19, N. 2 (2018)
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202 AN ERROR BOUND FOR LOW ORDER APPROXIMATION OF DYN SYS SUBJECTED TO IC

Thus, the system in the modal form can be partitioned as in eq. 2.3 with w(t) = {w1(t);w2(t)}.
Where w1(t) and w2(t) are the most cominant and less dominant DOF respectively.

ẇ1

ẇ2

y

=

 Ã11 0 B̃1

0 Ã22 B̃2

C̃1 C̃2 D̃




w1

w2

u

 (3.14)

The reduction by truncation is applied in eq. 3.14 and the error system [Ãe, B̃e, C̃e, D̃e] is
ẇ1

ẇ2

ẇr

ẽ

=


Ã11 0 0 B̃1

0 Ã22 0 B̃2

0 0 Ã11 B̃1

C̃1 C̃2 −C̃1 0




w1

w2

wr

u

 (3.15)

With ŵ = {w1;w2;wr} is the state vector of eq. 3.15 and ẽ(t) is the error of the ROM model in
the modal basis.

The eq. 3.15 can be simplified to its minimal realization, showed in 3.16.{
ẇ2

ẽ

}
=

[
Ã22 B̃2

C̃2 0

]{
w2

u

}
(3.16)

The observability gramian Q̃e for the modal form can be calculated from eq. 3.16.

ÃT
22Q̃e + Q̃eÃ22 + C̃T

2 C̃2 = 0 (3.17)

The method to calculate the observability grammian of the error system using eq. 3.17 requires
considerable less computational processing capacity and memory than the method to calculate
the grammian using the high order Lyapunov equation to the system in eq. 3.15. The solution
of Lyapunov equations involving lower order matrices, as described in this method, is a great
advantage considering the high computational effort and memory involved in the solution of this
type of problem [4, 9]

The norm ‖ẽ‖L2 for a given IC w0
2 = w2(0) for eq. 3.16 is

‖ẽ‖2
L2

= (w0
2)

T Q̃ew0
2 (3.18)

Consequently, the minimum L2-error upper bound ε̃0 of the ROM in the modal base, for any
given IC w(0) (applied at the HOM described in eq. 3.15) is

ε̃
2
0 = max

i
abs
(
λi(Q̃e)

)
= abs

(
λmax(Q̃e)

)
(3.19)

4 EXAMPLE

Consider a Single-Input-Single-Output (SISO) dynamical system composed by 3 bodies as in
figure 1.

Tend. Mat. Apl. Comput., 19, N. 2 (2018)
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The parameter values are: m1 = 1kg, m2 = 0.1kg, m3 = 1kg, k1 = 1N/mm, k2 = 0.1N/mm,
k3 = 0.5N/mm, k4 = 2N/mm, c1 = 0.2N/(mm/s), c2 = 0.1N/(mm/s), c3 = 0.1N/(mm/s), c4 =

0.5N/(mm/s).

Figure 1: Mass-spring-damper system with 3 bodies.

The state space vetor is x = {x1, ẋ1,x2, ẋ2,x3, ẋ3} and HOM can be written as



ẋ1

ẍ1

ẋ2

ẍ2

ẋ3

ẍ3

y


=



0 1 0 0 0 0 0
− k1+k2

m1
− c1+c2

m1

k2
m1

c2
m1

0 0 1
m1

0 0 0 1 0 0 0
k2
m2

c2
m2

− k2+k3
m2

− c2+c3
m2

k3
m2

c3
m2

0
0 0 0 0 0 1 0
0 0 k3

m3

c3
m3

− k3+k4
m3

− c3+c4
m3

0

0 0 1 0 0 0 0





x1

ẋ1

x2

ẋ2

x3

ẋ3

u


(4.1)

Two reduced models, herein called RO and RM, were calculated by applying the truncation of 2
states in the original and modal basis respectively. Equation 4.2 shows the RO model which state
vector is xRO = {ẋRO1;xRO1; ẋRO2;xRO1}

ẋRO1

ẍRO1

ẋRO2

ẍRO2

yRO


=


0 1.0 0 0 0
−1.1 −0.3 0.1 0.1 1.0

0 0 0 1.0 0
1.0 1.0 −6 −3 0
0 0 1.0 0 0





xRO1

ẋRO1

xRO2

ẋRO2

u


(4.2)

Equation 4.3 shows the RM model, obtained by truncating the HOM in the modal basis, which
state vector is wRM = {ẇRM1;wRM1; ẇRM2;wRM1}

ẇRM1

ẅRM1

ẇRM2

ẅRM2

yRM


=


−0.1248 1.0303 0 0 1.4843
−1.0303 −0.1248 0 0 −0.1391

0 0 −0.2962 1.3576 −0.3413
0 0 −1.3576 −0.2962 0.1140

0.0696 −0.2477 −0.0934 −0.4280 0





wRM1

ẇRM1

wRM2

ẇRM2

u


=

(4.3)

Tend. Mat. Apl. Comput., 19, N. 2 (2018)
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5 RESULTS

Although it is not necessary for the determination of the error bounds, complete and reduced
models were simulated subjected to IC in order to demonstrate the dynamic behavior of the error
in the worst case scenario.

Figure 2 shows the response of the complete and reduced RO models subjected to the IC xλmax(0)
and xROλmax(0) = respectively.

xλmax(0) = { −0.0136; 0.0895 −0.0978 −0.0157 −0.0832 −0.4291 }
xROλmax(0) = { −0.0136 0.0895 −0.0978 −0.0157 }

The vector xλmax(0) is the eigenvector associated to the eigenvalue λmax(Qe) specified in eq. 3.11,
with ‖xλmax(0)‖= 1. Consequently, xROλmax(0) is the IC vector for the truncated reduced model.

Figure 2: Dynamic simulation of complete and reduced RO system (original basis).

Figure 3 shows the response of the complete and reduced RM models (both in the modal basis)
subjected to the IC wλmax(0) and wRMλmax(0) = respectively.

wλmax(0) = { 0 0 0 0 −0.1611 0.9869 }
wRMλmax(0) = { 0 0 0 0 }

The vector wλmax(0) is the eigenvector associated to the eigenvalue λmax(Q̃e) specified in eq.
3.19, with ‖wλmax(0)‖= 1. Consequently, wRMλmax(0) is the IC vector for the truncated reduced
model.

Figure 4 shows the error of the reduced RO and RM systems subjected to the above mentioned
initial conditions.

Using eq. 3.11 and eq. 3.19, the error bounds ε0 and ε̃0, for the reduced models RO and RM
respectively, are presented in Table 1. These values are compared to the corresponding L2 error
norms, calculated from eq. 2.5.

Tend. Mat. Apl. Comput., 19, N. 2 (2018)
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Figure 3: Dynamic simulation of complete and reduced RM system (modal basis).

Figure 4: Error of the reduced order systems.

Table 1: Error bounds and L2 error norms calculated from simulations.

Reduced model error bound (1) L2-norm of the error (2)

RO (original basis) ε0=0.8885 0.8885
RM (modal basis) ε̃0=0.2119 0.2119

(1) calculated using eq. 3.11 and eq. 3.19
(2) calculated using eq. 2.5

6 CONCLUSIONS

In this work, a method to calculate an error bound for Model Order Reduction (MOR) by trunca-
tion was introduced for the IC problem. This minimum upper bound measures the capability of
the Reduced Order Model (ROM) to reproduce the dynamics of the High Order Model (HOM)
in the worst scenario. The application was first presented regardless the realization of the HOM.

Tend. Mat. Apl. Comput., 19, N. 2 (2018)
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Later, the special case for MOR by modal truncation was presented and discussed. The pro-
posed method also have the advantage of a considerable less computational processing capacity
and memory to the calculate the observability gramian of the error system. This leads to a con-
siderable time, hardware and memory savings when the method is applied to extremely large
systems.

The advantages of using the presented method is that the minimum upper bound of the L2 error
can be calculated without the necessity to perform the free transient analysis of the error.

According to the numerical results, the error bound of the reduced model by modal truncation
(RM) is smaller than the truncation in the original basis (RO), such a result indicates that the
reduction by modal truncation is a better approximation than the truncation in the original basis
for the free transient response approximation.

RESUMO. Nos últimos anos, um grande esforço tem sido realizado para se obter modelos
de sistemas dinâmicos de ordem reduzida. Esta necessidade é impulsionada pela demanda
por técnicas mais eficientes para simular sistemas dinâmicos em áreas como dinâmica de
estruturas, projeto de controladores, circuitos eletrônicos, dinâmica de fluidos e sistemas
microeletromecânicos.

Os autores propõem um método para calcular o limite superior mı́nimo da norma L2 do
erro de um sistema linear invariante no tempo e de ordem reduzida, considerando todas as
possı́veis combinações de condições iniciais unitárias. Consequentemente, o método pro-
posto calcula o vetor unitário de condições iniciais que maximiza a norma L2 do erro
do sistema reduzido. Baseado neste limite de erro, avalia-se a capacidade que um sistema
dinâmico de ordem reduzida possui para aproximar a resposta transitória frente a condições
iniciais.

Palavras-chave: Redução da ordem de modelos, sistemas dinâmicos, gramiano de
observabilidade, condições iniciais, limite de erro.
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