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ABSTRACT. Due to the natural variability of the arboreal bark there are texture patterns in trunk images
with values belonging to more than one species. Thus, the present study analyzed the usage of fuzzy mod-
eling as an alternative to handle the uncertainty in the trunk texture recognition, in comparison with other
machine learning algorithms. A total of 2160 samples, belonging to 20 tree species from the Brazilian native
deciduous forest, were used in the experimental analyzes. After transforming the images from RGB to HSV,
70 texture patterns have been extracted based on first and second order statistics. Secondly, an exploratory
factor analysis was performed for dealing with redundant information and optimizing the computational
effort. Then, only the first dimensions with higher cumulative variability were selected as input variables
in the predictive modeling. As a result, fuzzy modeling reached a generalization ability that outperformed
some algorithms widely used in classification tasks. Therefore, the fuzzy modeling can be considered as a
competitive approach, with reliable performance in arboreal trunk texture recognition.

Keywords: soft computing, image processing, pattern matching, bioinformatics.

1 INTRODUCTION

The usage of computational intelligence in the feature extraction and pattern recognition from
biological data has been increasingly studied for supporting the arboreal identification. However,
as the studies carried out have focused on the processing of leaf images, these techniques are not
applicable when the leaf structure is not available, as occurs with deciduous species at certain
times of the year.

As an alternative, the texture recognition in tree trunk images still has few outcomes reported
in the literature, in which the predictive modeling has been performed using machine learning
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112 ARBOREAL IDENTIFICATION SUPPORTED BY FUZZY MODELING

algorithms based on k-Nearest Neighbors ([26], [30]), Artificial Neural Networks ([19]), Support
Vector Machine ([6], [13], [18]), and Decision Tree ([10]).

By analyzing statistical properties in tree trunk images, [10] found that, due to the natural vari-
ability of the arboreal bark, commonly its texture patterns have some values belonging to more
than one species, i.e, there is an overlap between neighboring subspaces. As a consequence, this
overlapping in the pattern matching can lead to an ambiguity during predictive modeling.

In these cases, there is some uncertainty with regard to what species the sample belongs to, un-
dermining the texture analysis by means of predictor variables with a sharply defined boundary.
Therefore, the present study aims to analyze the usage of fuzzy modeling as an approach to deal
with the uncertainty in the trunk texture recognition, in comparison with other machine learning
algorithms.

In the mid-1960s, the fuzzy set theory has been developed by [32] as an extension of the classical
set theory to provide a mathematical treatment for complex phenomena, becoming it popular after
1980s ([33], [25]). For that, the fuzzy modeling is a soft-computing method capable of processing
uncertain knowledge or data. Thus, by affording a convenient formalism for integrating different
kinds of variables, by means of an user-friendly structure with transparency and interpretability,
the usage of fuzzy modeling is becoming more and more common, with several applications in
the environmental sciences over the years (e.g. [7], [8], [9], [22], [23], [21], [4], [2], [28]).

According to [20], the main applications of the fuzzy modeling used to be optimization and
control problems. Nevertheless, nowadays many other areas can be highlighted, such as the de-
velopment of intelligent systems for supporting the decision making, data mining, signal pro-
cessing, diagnosis, forecasting, regression, and classification from numerical data using pattern
recognition based on the graded membership ([29]). Thereby, the fuzzy modeling can achieve
a competitive performance when compared to other machine learning algorithms in classifica-
tion tasks involving uncertainty, vagueness, partial true, which demand predictors without hard
boundaries ([3], [27]).

2 METHODS

2.1 Data collection and feature extraction

The data were collected using a digital camera for capturing outer bark images at different heights
of the trunk, at a 50 mm distance around the trees. Due to the three-dimensional shape of arboreal
trunk, only a central area was used for extracting features, in order to avoid the distortion at the
image edge. Then, using a moving mask with 512 x 512 pixels, 2160 samples were obtained,
being 108 of each of the 20 tree species from the Brazilian native deciduous forest, shown in
Figure 1.

To reduce the influence of the environmental conditions and image acquisition settings, before
starting the feature extraction the images have been transformed from RGB (red-green-blue) sys-
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      Af                    Am                   Bf                   Ca                   Ce 

      Cf                    Cp                   Cs                   Ct                   Ec 

      Es                   Gp                   Gu                  Hc                   Iv 

      Pg                   Sp                    Tg                  Tr                    Zk 

Figure 1: Tree trunk images (512x512 pixels) from: Anadenanthera falcata (Af ), Anadenan-
thera macrocarpa (Am), Bauhinia forficate (Bf ), Caesalpinia ferrea (Ca), Caesalpinia echinata
(Ce), Cedrela fissilis (Cf ), Caesalpinia peltophoroides (Cp), Ceiba speciosa (Cs), Centrolobium
tomentosum (Ct), Enterolobium contortisiliquum (Ec), Erythrina speciosa (Es), Gochnatia poly-
morpha (Gp), Guazuma ulmifolia (Gu), Hymenaea courbaril (Hc), Inga vera (Iv), Piptadenia
gonoacantha (Pg), Schizolobiun parahyba (Sp), Tibouchina granulosa (Tg), Tabebuia roseoalba
(Tr), and Zanthoxylum kleinii (Zk).

tem to HSV (hue-saturation-value) space. Then, features based on first and second order statistics
were extracted using the V channel from the grayscale images.

The first-order statistical parameters included 6 texture features, equivalent to uniformity,
entropy, skewness, smoothness, intensity, and standard deviation, described below from [14].

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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As a measure of the proximity of the gray levels, the uniformity (u) is given by:

u =
L−1

∑
i=0

p2(zi) (2.1)

where L correspond to the number of gray levels in the image, zi is the intensity, and p(zi) is the
image histogram.

The first-order entropy (e) measures the randomness in the image, as in:

e =−
L−1

∑
i=0

p(zi) log2 p(zi) (2.2)

The skewness is a measure of the asymmetry (µ3), and smoothness (s) takes in to account the
transition of gray shades, respectively obtained by:

µ3 =
L−1

∑
i=0

(zi−µ1)
2 p(zi) (2.3)

and
s = 1− 1

1+µ2
2

(2.4)

where (µ1) is the intensity that returns the gray level average, and (µ2) is the standard deviation,
calculated by:

µ1 =
L−1

∑
i=0

zi p(zi) (2.5)

and

µ2 =
1

n−1

n

∑
i=1

(zi−µ1)
2 (2.6)

where n is the number of image pixels.

In turn, the second order statistics was composed of the contrast, correlation, energy, and homo-
geneity, measured at 16 positions (φ ), correspondent to distance between pixels equal to 1, 3,
5 and 7, in the rotation angles 0, 45, 90 and 135 degrees, producing 64 texture features. These
descriptors are described below from [17] and [15].

Contrast (c) compares the intensity of neighboring pixels, being calculated by:

cφ =
k

∑
i=1

k

∑
j=1

(i− j)2 pi j (2.7)

where k is the co-occurrence matrix dimension, pi j is probability of satisfying φ .

The correlation (r) measures the probability of occurrence of specified pixel pairs, given by:

rφ =
k

∑
i=1

k

∑
j=1

(i−mrow)( j−mcol)

σrow−σcol
pi j (2.8)

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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Energy (ε) adds the squared elements in the co-occurrence matrix, and homogeneity (h) measures
the closeness of gray levels in the spatial distribution over image, respectively obtained by:

εφ =
k

∑
i=1

k

∑
j=1

p2
i j (2.9)

and

hφ =
k

∑
i=1

k

∑
j=1

pi j

1+ |i− j|
(2.10)

From the foregoing, the total number of measured variables amounted to 70 texture features.
Then, taking into account that some features may be highly correlated, an Exploratory Factor
Analysis (EFA) has been performed. As a multivariate analysis technique, the EFA finds a coor-
dinate system that maximizes the variance shared among variables, enabling to reduce the data
dimensionality and prevent the use of redundant information ([12]).

In the new m-dimensional space found by EFA, the standardized original variables (z) correspond
to linear combinations of underlying factors (z′), given by ([31]):

z j = a j1z′1 +a j2z′2 + ...+a jmz′m (2.11)

For that, the EFA was carried out using the Spearman’s coefficient, a non-parametric alternative
regarded as robust for general distributions (non-normal data), the principal factors as extraction
method, and the communalities (hi) based on the squared multiple correlations, as in:

hi =
m

∑
j=1

l2
i j (2.12)

where li j is the correlation between the ith principal factor with jth original variable (texture
feature), previously standardized by means of:

zi =
xi− x̄

σ
(2.13)

where xi is the measured original variable, x̄ and σ are respectively its mean and standard
deviation.

Thus, the features extracted from tree trunk images have been reduced to fewer latent variables
(principal factors), which were used as predictors for generating fuzzy if-then rules in the texture
pattern recognition.

2.2 Fuzzy modeling for the pattern recognition

The development of the fuzzy modeling for classification tasks is relatively recent in comparison
to other applications. Notwithstanding, several approaches have already been proposed, includ-
ing space partitioning ([11]), neural-network-based methods ([24]), clustering techniques ([1]),
genetic algorithms ([16]), and fuzzy partition using certainty grades ([20]).

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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For the predictive modeling in the present study, we used a fuzzy rule-based classification sys-
tem, created and described by [27] as FRBCS.W algorithm, made available in R programming
language by means of the ‘frbs’ package. The FRBCS.W algorithm has been developed based on
the Ishibuchi’s method ([20]).

As aforementioned, the Ishibuchi’s method is a learning method from numerical data that consists
of the fuzzy partitioning with certainty grades. In the learning process, the antecedent part of rules
is determined by a grid-type fuzzy partition. This partitioning occurs by dividing the input space
of the predictor variables (xi) into regular fuzzy regions, resulting in uniform and symmetrical
intervals correspondent to the antecedent terms (ai j), as can be seen in Figure 2.
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Figure 2: Grid-type fuzzy partition: (a) partitioning of the pre-
dictor variable - xi; (b) intervals of certainty and uncertainty that
comprises the fuzzy region.

By using the grid-type fuzzy partition, the total number of rules (N) is determinate by amount of
possible combinations of the antecedent terms. For that, rulebase is generated by pattern match-
ing, calculating membership degrees (ϕ) of the training data in the antecedents terms (ai j) of
each predictor variable (xi). In turn, the consequent part is defined as the dominant categorical
variable (C j) in the decision area formed by the fuzzy if-then rule ([20]):

RuleR j : IF x1 is a1 j AND ...AND xm is am j

THEN C j with CFj, j = 1,2, ...,N (2.14)

where x is a m-dimensional vector of predictor variables (xi), CFj is the certainty grade of the
rule R j, and C j is the dominant categorical variable, determined taking into account:

∑
p∈classC j

ϕ j(xp) = max

{
∑

p∈classk
ϕ j(xp) : k = 1,2, ...,c

}
(2.15)

where xp = (xp1, ...,xpm) is a new pattern, and c is the number of output classes.

After generating the predictive model, the classification of new instances is based on a single
winner rule, which is determined by ([20]):

ϕ j(xp).CFj = max
{

ϕ j(xp).CFj : j = 1,2, ...,N
}

(2.16)

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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where ϕ j (xp) is the compatibility grade of the instance in the rule R j, and CFj is the certainty
grade, a real number in the interval [0, 1] that works as the weight of rule, given by:

CFj =
βclassC j(R j)− β̄

c

∑
k=1

βclassk(R j)

(2.17)

where

β̄ =

∑
k 6=C j

βclassk(R j)

(c−1)
(2.18)

and
βclassk(R j) = ∑

xp∈classk
ϕ j(xp),k = 1,2, ...,c (2.19)

2.3 Benchmarking experiment

From the database with 2160 samples, we used 70% of this total, randomly selected, for the ma-
chine learning process. During this process a 5-fold cross-validation was carried out over learning
dataset, in order to find the best control parameters setting. Then, a hold-out validation has been
performed using the remaining 30% as testing dataset for assessing the generalization ability of
the Fuzzy Rule-Based Classification System (FRBCS) in the trunk texture pattern recognition
(Figure 3).

database 

learning 

testing 

training 

checking 

model 

hold-out  

validation 

cross-validation 

Figure 3: Split of database for the learning process and to assess
the generalization ability based on testing dataset.

Furthermore, as a reference for assessing the performance from the fuzzy-based approach, a
benchmarking experiment has been carried out using the same database for training, checking
and testing other algorithms shown in Table 1.

Based on the testing results, the learning algorithms performance has been assessed according
to the overall accuracy (θ ), which measures the ratio of samples correctly classified by the total
number of samples (nT ), as in:

θ = n−1
T

nsp

∑
i=1

T Pspi (2.20)

where T Pspi is the total number of true positive samples, and nsp is the total number of tree
species.

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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Table 1: Algorithms and setting of control parameters adjusted during the learning
process, which provide the best results in the cross-validation over the checking dataset.

Learning algorithm Control parameters settings Available in
Fuzzy-Based System frbcs.w, mf: gaussian, Package ‘frbs’
(FRBCS) t-norm: product, R language

antecedent terms: 23
Boosted Rule-Based subset: false, no global Package ‘C5.0’
Model (C5) pruning: false, CF: 0.25, R language

trials: 100
Cascade-Correlation kernel: sigmoid and Algorithm ‘CNN’
Neural Network (CNN) gaussian, neuron: 0-103, C language

candid. 102, epoch 103

prune to optimal size
k-Nearest Neighbors model: knn kernel, Pack ‘CORElearn’
(KNN) weighting: gaussian R language

kernel, type: probability
Probabilistic Neural sigma: each var., steps 20, Algorithm PNN
Network (PNN) kernel: gaussian, prior prob.: C language

frequency distribution
Multilayer Perceptron layers: 3, overfitting control: Algorithm MLP
Network (MLP) min. holdout val. error over C language

10% train, function: logistic
Random Dec. Forest importance: true, Pack ‘randomForest’
(Random Forest) proximity: true, R language

number of trees: 300
Single Decision Tree minimum node to split: 3, Algorithm SDT
(SDT) maximum tree levels: 300, C language

prune to min cross-val error
Stochastic Gradient trees: 300, depth: 8, Algor. ‘TreeBoost’
Boosting (TreeBoost) min size node to split: 10, C language

prune series to min. err,
minimum trees in series: 10

Support Vector type: bound-constraint, Package ‘kernlab’
Machine (SVM) kernel function: gaussian, R language

sigma: 0.1, C: 24

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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3 RESULTS AND DISCUSSION

Regarding the requirements for data preprocessing using multivariate analysis, the Cronbach’s
alpha equivalent to 0.9 indicated an excellent internal consistency, and the Kaiser-Meyer-Olkin
equal to 0.97 confirmed a good sampling adequacy, verifying sufficient conditions to perform the
Exploratory Factor Analysis (EFA), whose result is shown in Figure 4.
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Figure 4: Eigenvalues and cumulative variability explained by
the first 20 latent variables (principal factors) produced from the
Exploratory Factor Analysis.

From the Figure 4, we find that the first 20 principal factors explain 99.0% of the cumulative
variability. Therefore, the EFA was capable of reducing the data dimensionality and at the same
time retaining almost all information available in the 70 original variables. Thus, these principal
factors were used as predictor variables in the modeling process, affording the results shown in
Table 2.

In general, each machine learning algorithm has properties which can provide better performance
than others, depending on the characteristics of the case under analysis. Thus, the performance
from the algorithms in the benchmarking experiment has been discussed taking into account such
properties. In this sense, by analyzing Table 2 it is noted three performance groups according to
the accuracy over testing dataset.

With accuracy less than 80%, in the first group are the Single Decision Tree (SDT) and Cascade-
Correlation Neural Network (CNN). The CNN is a self-organizing network that determines its
own size and topology, by adding neurons to the architecture. The SDT also grows adding nodes
to its structure, both for reaching greater preciseness during the learning process. As a conse-
quence, these algorithms can lead to an overfitting to the train data, losing some generalization
ability. Then, we use an overfitting control pruning the models to minimum cross-validated error
over checking dataset.

Despite this, the CNN performance decreases from 86.2% during training to 78.5% in the testing,
and SDT from 91.6% to 72.3%. Therefore, these findings can be considered as an indicator of
the complexity of the arboreal trunk texture, making hardier the classification task.

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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Table 2: Performance of the machine learning algorithms in the benchmarking
experiment, using the first 20 principal factors as predictor variables.

Learning algorithms
5-fold Cross-validation (%) Hold-out validation (%)

Training data Checking data Testing data
FRBCS 100 93.5 94.0
C5 100 85.3 86.5
CNN 86.2 76.5 78.5
KNN 96.3 89.1 89.7
PNN 100 95.3 96.1
MLP 94.9 88.5 90.8
Random Forest 100 88.9 89.5
SDT 91.6 72.3 72.3
TreeBoost 100 85.7 87.3
SVM 100 95.9 96.2

Capable of handling this issue better than the single tree-based model (SDT), the Decision Tree
Forest (Random Forest), Stochastic Gradient Boosting (TreeBoost), and Boosted Rule-Based
Model (C5.0) are in the second group of algorithms with medium-performance in the testing
(from 80 to 90%), along with k-Nearest Neighbors (KNN).

The Random Forest and TreeBoost are ensembles based on different strategies of creating a
collection of decision trees. The Random Forest uses the bagging (Bootstrap Aggregating) tech-
nique for creating trees grown in parallel, which afforded a generalization ability of 89.5%. On
the other hand, the TreeBoost uses a sequential training (boosting) that resulted in a series of
trees with 87.3% accuracy. Similarly, C5.0 is a voting classification algorithm also based on a
boosting technique to create a collection of rules that achieved 85.3% accuracy. The boosting
usually provides more accuracy than bagging strategy, except when there is some noise in data,
such as outliers ([5]). Therefore, as the Random Forest outperforms the boosting-based models
in the present analysis, we can consider some influence of outliers. Notwithstanding, as the bark
texture in the arboreal trunk is a biological feature subject to imperfections, these outliers has
not been removed because they can be caused by a natural variability. In turn, the KNN is a
non-parametric algorithm of instance-based learning, in which a pattern is recognized by ma-
jority voting according to the similarity with the k nearest neighbors. By using kernel functions
to weight the vote of the neighbors, the KNN provides 89.7% accuracy, slightly higher than
ensemble-based models.

The third group with high-performance, more than 90% of accuracy over testing dataset, has
been formed by the Support Vector Machine (SVM), Probabilistic Neural Network (PNN), Fuzzy
Rule-Based Classification System (FRBCS), and Multilayer Perceptron Neural Network (MLP).

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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The SVM operates by finding an n-dimensional hyperplane in order to optimize the separation of
different data classes. Although similar to the artificial neural networks (ANN) in some aspects,
the SVM is less prone to overfitting and has good adequacy for dealing with high dimensional
spaces and outliers, because it selects the most suitable features and considers only the most
relevant points. Besides that, the SVM has a solution global and unique whilst the ANN can suffer
from multiple local minima. Thus, in our analysis the SVM provides a significant improvement in
comparison with most of the learning algorithms, reaching 96.2% accuracy over testing dataset.

Among the artificial neural networks, the PNN performs the classification based on the estimation
of probability density functions, capable of dealing with erroneous data and computing nonlinear
decision boundaries as complex as necessary, in order to approach the Bayes optimal, i.e., to
minimize the error in a probabilistic manner as much as possible. Thus, relatively insensitive to
outliers, the PNN achieves virtually the same performance than SVM, with 96.1% accuracy over
testing dataset. In turn, the MLP allows nonlinear mappings, using logistic activation functions
and back-propagation algorithm for adjusting the neural network weights. To prevent overfitting,
we use the MLP architecture with minimum validated error during the learning process, resulting
in a substantial generalization ability correspondent to 90.8% accuracy, but still even lower than
PNN one.

Regarding the FRBCS, to be the focus of the present study, in what follows we approach a more
detailed description on the machine learning process, before presenting the accuracy over testing
dataset. During the training we found that the gaussian curve membership function afforded a
performance better than ones achieved with triangular and trapezoidal-shaped functions. Then,
using gaussian functions for the fuzzy partitioning, variations of the number of antecedent terms
have been assessed in combination with minimum and product t-norm (Figure 5).
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Figure 5: Performance of different setings of the fuzzy rule-based
classification model, from the variations of the number of antecedent
terms in combination with minimum and product t-norm.

Analyzing Figure 5, it is noted that, for both t-norms (minimum and product), about 10 an-
tecedent terms were sufficient for the fuzzy classifier to reduce the error to zero during the
training, but a higher accuracy over checking dataset required a greater number of terms. In

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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that regard, one of the main aspects to highlight is the difference of performance provided by
minimum and product t-norm.

Both product and minimum t-norm allowed aggregating the predictor variables via fuzzy inter-
sections, modeling the simultaneous occurrence of patterns that characterize the same arboreal
species. However, the product t-norm operates multiplying all the membership values and, in con-
trast, the minimum t-norm takes into account only the lowest membership during the aggregation
process (Figure 6).
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Figure 6: Aggregation process of predictor variables (xi) in the
rules 1 (R1) and 2 (R2), using minimum and product t-norm.

In Figure 6 we have a case in which a given sample has features (pattern values) belonging to
more than one arboreal species, i.e, a sample with pertinence in both consequent classes of the
rules 1 and 2, but with different membership degrees. By using the minimum t-norm the most
critical condition given by the lowest membership become decisive, and hence we have a more
rigorous classifier, but which can be naive by disregarding the other predictor variables.

As a consequence, for the case in Figure 6 the minimum t-norm would result in the arboreal
species identification supported by the rule 2 (ϕmin(R2) > ϕmin(R1)). However, the sample has
higher membership in the majority of the fuzzy regions correspondent to the consequent of the
rule 1, as computed by the product t-norm (ϕprod(R1)> ϕprod(R2)). Thus, by taking account all
the predictors, the product t-norm seems to afford a more assertive predictive modeling, so that
it provided better performance than minimum t-norm in all settings assessed (see Figure 5).

During the learning process we can note a tendency of accuracy improvement over checking
dataset with the increase of the number of fuzzy regions, which was more significant up to about
15 antecedent terms. This improvement seems to occur due to the increase of the decision areas
(D j) formed by each fuzzy if-then rule, as can be seen in Figure 7.

Nevertheless, after a certain point there was a performance fluctuation that demanded an ex-
haustive search for the best accuracy over checking dataset (93.5%), which was found using
gaussian curve membership function, product t-norm, and 23 antecedents terms. Then, by using
this setting the fuzzy-based model reaches 94.0% accuracy over testing dataset.

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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Figure 7: Increase in decision areas formed by the fuzzy if-
then rules as a consequence of the increment of the number of
antecedent terms.

4 CONCLUSIONS

In the present study we analyzed the enforceability of fuzzy-based pattern recognition for dealing
with complexity related to the natural variability of texture in the arboreal trunk, which can cause
uncertainties due to ambiguity in the pattern matching.

By providing a nonlinear and smooth discriminant function, with the differential of taking into
account the graded membership of a given sample in different classes (arboreal species), the
Fuzzy Rule-Based Classification System (FRBCS) afforded a high generalization ability, which
outperformed the most of assessed learning algorithms, including ensembles with a lot of clas-
sifiers and kernel-based models, such as some artificial neural networks, widely used in pattern
recognition tasks. Therefore, the fuzzy modeling can be considered an alternative approach, with
a competitive and reliable performance for arboreal trunk texture recognition, in order to support
the tree species identification using computational intelligence.
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RESUMO. Devido à variabilidade natural da casca arbórea, há padrões de textura em im-
agens de tronco com valores pertencentes a mais de uma espécie. Logo, o presente es-
tudo analisou o uso da modelagem fuzzy como uma alternativa para lidar com a incerteza
no reconhecimento de padrões, em comparação com outros algoritmos de aprendizado de
máquina. Para as análises experimentais foram utilizadas um total de 2160 amostras, perten-
centes a 20 espécies arbóreas da floresta decı́dua brasileira. Depois de transformar as ima-
gens do sistema RGB para modelo HSV, 70 padrões de textura foram extraı́dos com base em
estatı́sticas de primeira e segunda ordem. Na sequência, foi realizada uma análise fatorial
exploratória para tratar informações redundantes e otimizar o esforço computacional. Então,
apenas as primeiras dimensões com maior variabilidade acumulada foram selecionadas
como variáveis de entrada na modelagem preditiva. Como resultado, a modelagem fuzzy
alcançou uma capacidade de generalização superior a de algoritmos amplamente usados
em tarefas de classificação. Portanto, a modelagem fuzzy pode ser considerada uma abor-
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dagem com desempenho competitivo e confiável no reconhecimento da textura em imagens
do tronco arbóreo.

Palavras-chave: computação não-rı́gida, processamento de imagens, correspondência de
padrões, bioinformática.
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