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ABSTRACT. This work is concerned with the numerical simulation of the Kelvin–Helmholtz instability
using an ideal and resistive two-dimensional magnetohydrodynamics model in the context of an adaptive
multiresolution approach. The Kelvin-Helmholtz instabilities are caused by a velocity shear and normally
expected in a layer between two fluids with different velocities. Due to its complexity, this kind of problem
is a well-known test for numerical schemes and it is important for the verification of the developed code.
The aim of this paper is to verify the implemented numerical model with the well-known astrophysics
FLASH code.
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1 INTRODUCTION

The magnetohydrodynamics (MHD) theory describes the dynamics of a conducting fluid in

presence of magnetic fields and constitutes an important tool to study the macroscopic behavior
of plasmas [11]. In this context, the Kelvin-Helmholtz instability, which is commonly expected
in boundary layers separating two fluids, is an important and a complex physical problem that

can be studied with the MHD models, and should often occur in both astrophysical and space
geophysical environments [6]. On the discretization of the MHD system, we use a finite vol-
ume (FV) method combined with an adaptive multiresolution (MR) approach to create a com-

putational mesh refined where local structures are presented. The FV method is based on the
integral form of conservation laws and guarantees the conservation of the model quantities. The
MR for cell-averages was firstly introduced by Ami Harten [10]. The idea is to represent a set
of data in different levels of resolution by using a wavelet transform. In the C++ code named
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318 MHD SIMULATION

CARMEN [15] the MR algorithm is implemented for compressible Navier-Stokes and five more

system of equations. The ideal MHD equations were added later to the CARMEN code [3, 8, 9],
and it is employed herein.

We use the FLASH code [7], developed by the Flash Center in University of Chicago, well-
known in astrophysics and space geophysics, to create a reference MHD solution to our results,

since it is not possible to obtain a exact solution. The goal of this work is to verify the numerical
results of CARMEN code for the Kelvin-Helmholtz instability problem by comparing them with
the reference solution, which is obtained in a regular Cartesian mesh.

The content is organized as follows. In Section 2, we briefly present both the MHD model and the

MR approach we use to simulate the Kelvin-Helmholtz instabilities; in Section 3, the numerical
methodology and implementation; in Section 4, the results and discussion. The final remarks are
presented in Section 5.

2 THE MHD MODEL

The ideal model describes the behavior of a perfectly conducting fluid under the influence of a
magnetic field. By adding a resistive term to the MHD system, there is no magnetic flux con-

servation anymore, which can lead to a more diffusive behavior. The resistivity is associated to
the parameter η, which comes from the Ohm’s law. For η �= 0 it can trigger a different behavior
to be studied in a plasma. It is important to note that when η → 0 the resistive MHD model

becomes the ideal MHD equations, which describe the conservation of mass, energy, momentum
and magnetic flux. In this work we consider η as a constant, but it is also possible to choose a
scalar function. In this context, we introduce the resistive MHD equations.

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1a)

∂e

∂t
+ ∇ ·

[(
e + p + |B|2

2

)
u − B (u · B)

]
= ∇ · [B × η(∇ × B)] , (2.1b)

∂ (ρu)
∂t

+ ∇ ·
[
ρut u + I

(
p + |B|2

2

)
− BtB

]
= 0, (2.1c)

∂B
∂t

+ ∇ · [utB − Btu
] = −∇ × (η∇ × B), (2.1d)

where ρ represents density, p the pressure, u = (ux , uy, uz) the velocity vector, B =
(Bx , By, Bz) the magnetic field vector, I the identity tensor of order 2, and γ the ratio of specific
heats (γ > 1). The pressure is given by the constitutive law

p = (γ − 1)

(
e − ρ

|u|2
2

− |B|2
2

)
,

where e is the energy density. For the magnetic field, we have the Gauss’ law for magnetism
∇ · B = 0, which means there is no magnetic monopole in the solution of the MHD model. This

Tend. Mat. Apl. Comput., 18, N. 2 (2017)



�

�

“main” — 2017/8/14 — 15:37 — page 319 — #3
�

�

�

�

�

�
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is an initial condition for the model. From the Faraday’s law ∇ × E = − ∂B
∂t (by applying the

divergence operator on the equation), we obtain ∂(∇·B)
∂t = 0, i.e., this means there is no variation

of the divergence of B over time.

In numerical simulation, the divergence of B does not always vanish. Then it becomes neces-
sary to implement a correction (or divergence cleaning) scheme so the solution will not lead

to unphysical behavior or unwanted instabilities. In the next section, we present the numerical
methodology for the simulation, including the divergence correction scheme.

3 NUMERICAL APPROACH

To introduce the MHD simulation numerical methodology we firstly present the initial value

problem for conservation laws of the form

∂U
∂t

+ ∇ · F(U) = S(U), (3.1)

U(x, y, t = 0) = U0(x, y), (x, y) ∈ �, (3.2)

where U = (ρ, e, ux, uy, uz, Bx , By, Bz) is the vector of conservative variables, F = F(U) the
flux tensor, S = S(U) the source term vector, � the domain and t the time. Using the definition

of Equation (2.1), we have

F(U) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρu(
e + p + |B|2

2

)
u − B (u · B)

ρut u + I

(
p + |B|2

2

)
− Bt B

ut B − Bt u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, S(U) =

⎛⎜⎜⎜⎝
0

∇ · [B × η(∇ × B)]
0

−∇ × (η∇ × B)

⎞⎟⎟⎟⎠ . (3.3)

In this section we describe the numerical methodology we use for the MHD simulation in the

context of adaptive multiresolution approach.

Divergence Cleaning approach. As discussed in the previous section, ∇·B = 0 is not satisfied
numerically and it can lead to unphysical behavior in the numerical solution of the MHD model.

We use the parabolic-hyperbolic correction [1], in which the errors are propagated and dissipated,
by introducing a new scalar variable ψ to the model, adding the term ∇ψ to the right-hand size
of Equation (2.1d) and defining a new equation to the ideal MHD system

∂ψ

∂t
+ c2

h∇ · B = − c2
h

c2
p
ψ, (3.4)

where cp and ch are the parabolic-hyperbolic parameters, with ch > 0, defined as

ch = ch(t) := νCF L
min{	x, 	y}

	t
,

Tend. Mat. Apl. Comput., 18, N. 2 (2017)
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320 MHD SIMULATION

where the Courant number νCF L ∈ (0, 1),	x and	y are the space steps and	t is the time step.

We also consider the parameter α = 	h ch/c2
p, where 	h = min(	x, 	y) [13]. The presented

scheme prevents magnetic monopoles from occurring and preserves the topology of the solution.
The model used to perform the simulation consists of the resistive MHD model and the respective

additional divergence correction terms or equation.

Finite Volume discretization. The discretization of the resistive MHD model is performed
by a finite volume method, which is based on the integral form of the conservation laws and

ensures the conservation of the system. The domain is partitioned into cells (or volumes) that are
associated to indexes i, j , with i, j ∈ {1, . . . , N}, where N is the number of cells in each x or y
directions. A cell-average at t n, n ∈ N, is associated to each cell Ci, j of the domain, obtained by
the integral of a certain quantity Un = U(x, y, t n) over the cell, i.e.,

U
n
i, j = 1

|Ci, j |
∫ ∫

Ci, j

Un dx dy. (3.5)

For simplicity, the superscript n is omitted in the following text. By applying the integral operator
to Equation (3.1) in terms of dx, dy for t = t n , and the Divergence Theorem, we obtain

∂

∂t
Ui, j = − 1

|Ci, j |
∫
∂Ci, j

F · nk dxk + Si, j , (3.6)

where ∂Ci, j is the boundary of cell Ci, j , and k is related to the flux direction. From the first

right-hand term we conclude that the flux has to be evaluated on the interfaces of the cells. The
values of the flux are based on the centered cell-averages, so it is necessary to approximate the
values of F through the cell interfaces. Since the interfaces of a cell Ci, j in x direction are located
at i ± 1/2, j , and i, j ± 1/2 in y direction, we have

∂

∂t
Ui, j = − 1

	x

(Fi+1/2, j −Fi−1/2, j
)

− 1

	y

(Gi, j+1/2 − Gi, j−1/2
)+ Si, j ,

(3.7)

where F,G are the estimated fluxes (or numerical fluxes) on the boundaries. The numerical
scheme we use is the Harten-Lax-van Leer Discontinuities (HLLD) Riemann solver [12] due to
its efficiency to resolve isolated discontinuities, and the monotonized central (MC) reconstruc-
tion [16] to ensure the 2nd -order in space.

Time evolution. The time evolution of Equation (3.7) is performed by a compact second-order
Runge-Kutta explicit scheme. The system is completed by suitable initial and boundary condi-
tions. The two-dimensional form of this system is considered.

Adaptive multiresolution analysis. The MR method is based on an adaptive cell average ap-
proach as discussed in [2,10]. To briefly present the adaptive MR analysis, we should first intro-
duce the MR representation. The main idea of MR is to decompose the data into several scaled

Tend. Mat. Apl. Comput., 18, N. 2 (2017)
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versions of it. In the context of our work, our data is an MHD solution represented by a set of cell

averages (mesh) [9]. The refinement levels are associated to a multiresolution mesh structure that
creates dyadic embedded cell meshes. Those meshes have different numbers of cells according
to the level they belong to.

Let � be a given level of refinement such as 0 ≤ � ≤ L , where L is the most refined level, and

U
�

is the cell-averages at level �. The computational mesh for each level � has 22� cells. Since
we aim to decompose/reconstruct the data into the refinement levels and also navigate between
them, we define the projection and prediction operators

P�+1→� : U
�+1 −→ U

�
, (3.8)

P�→�+1 : U
� −→ U

�+1
. (3.9)

To obtain coarser data from a refined set, for instance �+ 1 → �, we use the projection operator
defined in Equation (3.8), which is exact and unique. Otherwise, to obtain data in a more refined
level from coarse data, the prediction operator is used to perform an estimation of these values.

The approximation errors obtained with the prediction are called details or wavelet coefficients,
denoted by d� = [d�i, j , i ∈ {1, . . . , 2�}, j ∈ {1, . . . , 2�}] and they give the information about
the local regularity of the data, i.e., if the solution is locally smooth or not. As a consequence of

these processes, we obtain a relation between each two adjacent levels U
�+1 ↔ {d�,U

�}, which
means data in a more refined level can be acquired from the data in the coarser level along with
its wavelet coefficients. Analogously, by extending this concept, it is possible to create a relation

between the coarsest and most refined levels as following

U
L ↔ {dL−1, dL−2, . . . , d0,U

0}. (3.10)

Such relation is the basis of the multiresolution transform. This transform allows us to navi-

gate through the levels and obtain the data at each level of refinement. From this representation
comes the adaptive MR.

The idea of adaptivity starts from the wavelet coefficients, which can measure the local regular-
ity of the data according to a given threshold parameter ε� = ε(ε0, �), where � denotes the

cell scale level and ε0 is the initial threshold parameter. In this work, we take into account the
level-dependent and constant threshold parameters. The first varies with the level �, in other
words [2,10], at each level of refinement we compute ε� for the two-dimensional case as

ε� = ε0

|�|22(�−L+1), 0 ≤ � ≤ L − 1, (3.11)

where |�| is the area of the domain. The constant parameter remains unchanged for every �,
with 0 ≤ � ≤ L − 1. When the details are larger than ε�, the computational mesh needs to
be more refined locally; otherwise the mesh can remain coarser. This methodology allows the
computational mesh to be more refined only where it is required. For simplicity, we denote the

level dependent and constant threshold parameters as ε0 and ε, respectively.

Tend. Mat. Apl. Comput., 18, N. 2 (2017)
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3.1 CARMEN code

The original CARMEN code was developed by Olivier Roussel [15] in C++ to simulate the
Advection-diffusion, Burgers-diffusion, Flame front, Flame ball, Flame-curl interaction and

Navier-Stokes equations with the finite volume method in the context of the adaptive multires-
olution analysis for cell-averages. The ideal MHD model implementation in two dimensions
along with two Riemann solvers have being done since 2012 [3, 8]. After that, some modifica-

tions were made to improve the CPU time and boundary conditions, reconstruct the variables,
fix MHD waves evaluation and more [9]. Subsequently, the three-dimensional model, finite vol-
ume approach for MHD, and resistive MHD model is implemented, which is the most recent

modification. In this section we present the numerical methodology implemented in this code.

3.1.1 Notes on implementation

The additional source terms in Equations (2.1b) and (2.1d) require some modifications in the
code. First we present these terms in a less simplified form separately, and consider the current
density J = ∇ · B, with J = (Jx , Jy, Jz). In two-dimensions, we obtain:

J =
(
∂Bz

∂y
,−∂Bz

∂x
,
∂By

∂x
− ∂Bx

∂y

)
, (3.12)

as there is no variation in z direction.

Energy flux term. This term is part of the energy density Equations (2.1b), and it is denoted
by ∇ · (B × ηJ). Since we have already computed a divergence operator for the flux evaluation,
it is possible to use the same computation for the term B × ηJ. Thus, the flux functionsF and G
in Equation (3.7) for the variable E can be rewritten as

F̂(E) = F(E)− η(By Jz − Bz Jy) (3.13)

Ĝ(E) = G(E)− η(Bz Jx − Bx Jz), (3.14)

by adding the components of B × ηJ. We should recall that the fluxes F̂ and Ĝ are computed on

the interfaces of the cells in x and y directions, respectively.

Ohmic resistivity term. In this case, we denote the Ohmic resistivity in terms of J and we
obtain

∇ × (ηJ) = η

(
∂ Jz

∂y
,−∂ Jz

∂x
,
∂ Jy

∂x
− ∂ Jx

∂y

)
, (3.15a)

= ∂

∂x
(0,−η Jz, η Jy)+ ∂

∂y
(η Jz, 0,−η Jx ). (3.15b)

Here we also take advantage of the divergence operator. Since we have computed a derivative in x
forF and in y forG, the vector components in Equation (3.15b) are added to the fluxes according
to its space derivative, i.e., we add the x derivatives to F and, similarly, the y derivatives to G,

Tend. Mat. Apl. Comput., 18, N. 2 (2017)
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always taking into account that each component of this vector is related to an equation of the

magnetic field. Thereby, we update the fluxes as following

F̂(Bx ) = F(Bx ), (3.16)

F̂(By) = F(By )− η Jz, (3.17)

F̂(Bz) = F(Bz)+ η Jy, (3.18)

and for y direction

Ĝ(Bx ) = G(Bx )+ η Jz, (3.19)

Ĝ(By) = G(By ), (3.20)

Ĝ(Bz) = G(Bz)− η Jx, (3.21)

which are calculated on the cells interfaces. Thus Equation (3.7) becomes

∂

∂t
Ui, j = − 1

	x

(F̂i+1/2, j − F̂i−1/2, j
)

− 1

	y

(Ĝi, j+1/2 − Ĝi, j−1/2
)
.

(3.22)

It is important to note that the approach we use here is not unique, so other forms to evaluate

these terms may be used.

3.2 Code verification: reference solution

The FLASH code is a modular, parallel metaphysics code developed in FORTRAN90 and C
in the Flash Center of the University of Chicago, well-known in the space geophysics and as-
trophysics fields. The code includes the ideal and resistive MHD models with the finite volume

method and it is also possible to use an adaptive mesh refinement or non-adaptive approaches
for the simulation. Since FLASH is a verified FV code, we use it in simulations as a reference
solution.

The similarities between these codes in the context of this work are the following: a Harten-

Lax-Van Leer-Discontinuities Riemann solver and monotonized central variable reconstruction.
Moreover the following configurations are used: For the time evolution, FLASH performs a one-
step Hancock; FLASH also uses the 8-wave based divergence correction [14], which stabilizes

the numerical method by adding source terms proportional to ∇ · B on the right-hand side of the
system, i.e. the source term vector S = (0,−B∇ · B,−u∇ · B,−(u · B)∇ · B) is added to the
MHD equations.

FLASH code can also be adaptive, but we are interested only in its non-adaptive form as our

reference. We do not compare the mesh refinement and MR adaptivity, however that is possible,
as discussed in [4].

In particular, for FLASH code the source terms in Equations (2.1b) and (2.1d) are added to E
and B quantities after the time evolution at each timestep.

Tend. Mat. Apl. Comput., 18, N. 2 (2017)
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4 NUMERICAL EXPERIMENTS

In this section we present the results obtained with CARMEN code for L = 9 and the respective
reference computed with FLASH with the same level i.e., 512 × 512 mesh. We reinforce here

that the reference results allow us to compare the solution qualitatively and quantitatively, then it
is possible to measure how the CARMEN code solution is converging to the expected results.

In fluids or plasmas, the Kelvin-Helmholtz instability is triggered by a velocity shear and cre-
ates a vortex as discussed in [6]. That occurs in several phenomena in nature and space, in the

clouds and magnetosphere, for instance [5]. In our simulations, we consider the initial conditions
presented in Table 1, with

u0
x = 5(tanh(20(y + 0.5))− (tanh(20(y − 0.5))+ 1)),

u0
y = 0.25 sin(2πx)(exp[−100(y + 0.5)2] − exp[−100(y − 0.5)2]),

and periodic boundary conditions everywhere. The computational domain is � = [0, 1.0] ×
[−1.0, 1.0] and the finest scale is L = 9. We also define as parameters the Courant number

ν = 0.4, γ = 1.4, and the physical time t = 0.5. The choice of resistivity η = 0.02 is made
according to astrophysics uses, as discussed in [5] and for the ideal case we consider η = 0.
We have also tested other values of η as [0.005, 0.05]. We consider the threshold parameters

ε0 = 0.1 and 0.01 both for the ideal and resistive cases. For the divergence-cleaning, we adopt
α = 0.4, as discussed in [9].

Table 1: Kelvin-Helmholtz instability initial condition.

ρ p ux uy uz Bx By Bz

1.0 50.0 u0
x u0

y 0.0 1.0 0.0 0.0

The reference (left) and CARMEN (right) code solutions for ideal and resistive MHD are pre-
sented for the variables density ρ, velocity y-component uy, and magnetic field x-component

Bx in Figures 1 and 2. In both simulations the obtained results have the same maximum and
minimum values. The larger gradients values in the solution are presented where the vortexes are
located, near to y = −0.5 and y = 0.5. For the variable density, for instance, it is possible to find

gradients of one order of magnitude for the ideal case, and even not using the entire simulation
mesh these structures are well captured. The resistive results are clearly more diffusive when
compared to the ideal case, as expected, since it is the effect of the additional resistive terms.

Figures 3 and 4 present the cuts for the variables ρ, uy , and Bx , in x = 0.5 and y = 0.5 at
t = 0.5, respectively, of reference and CARMEN code solutions for ideal and resistive MHD.
These cuts are located where the most critical structures in solution are placed, due to many
discontinuities, and they remain very close for each case with both codes.

According to Figures 3 and 4, the solution obtained with the resistive MHD model approaches
the reference solution. We can also notice that for sufficiently big values of ε the convergence of

Tend. Mat. Apl. Comput., 18, N. 2 (2017)
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Reference CARMEN

Figure 1: Ideal MHD variables ρ, uy and Bx (from top to bottom) obtained at t = 0.5 and L = 9,

with reference and CARMEN code solutions for ε0 = 0.1.
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Reference CARMEN

Figure 2: Resistive MHD variables ρ, uy and Bx (from top to bottom) obtained at t = 0.5 and
L = 9, with reference and CARMEN code solutions for ε0 = 0.1.
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the solution is not sufficient, which means that the number of cells used to represent the solution

is not enough, thus it is important to find an acceptable threshold parameter in order to obtain a
fair relation between CPU time, number of cells, and accuracy.
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Figure 3: Ideal MHD cuts of variables ρ, uy , and Bx (from top to bottom) obtained at t = 0.5
and L = 9, with reference and CARMEN code solutions for ε0 = 0.01, ε = 0.05, ε0 = 0.1, on
x = 0.5 and y = 0.5.
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To illustrate this situation, we can observe the cuts for ε = 0.05, which do not converge prop-

erly to the reference solution when compared to the other two cases. However, this behavior is
expected since the percentage of cells needed for those simulations are 11% and 5% for the ideal
and resistive cases, respectively. This reinforces the importance of the choice of parameter ε.
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Figure 4: Resistive MHD cuts of variables ρ, uy, and Bx (from top to bottom) obtained at t = 0.5
and L = 9, with reference and CARMEN code solutions for ε0 = 0.01, ε = 0.05, ε0 = 0.1, on

x = 0.5 and y = 0.5.
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The adaptive meshes for the ideal and resistive cases at time t = 0.5 are presented for ε0 = 0.1

in Figure 5. In this simulation the use of memory (percentage of cells) over time is 32% for the
ideal case and 24% for the resistive case, when compared to a uniform mesh. The percentages
of CPU time needed are 67% and 72% smaller for the ideal and resistive MHD, respectively. To

quantitatively compare the presented results, Table 2 and 3 show the L1, L2, and L∞ error values
for every variable of the MHD model when the solution is compared with the reference results.
The errors are computed for MR and FV CARMEN solutions and the reference solution. The

values for the FV approach are slighty smaller when compared to the MR results. This result is
expected since we need a full mesh in order to obtain them. The errors for the resistive case are
even smaller when compared to the ideal case. That happens due to the diffusive behavior of the

solution, since the greater values occur where the sharpest structures are located. In Figure 6, the
diffusive behavior of the resistive terms of the MHD model is illustrated. We can observe how
the topology of the solution of the variable ρ changes according to the value of η. In this case
we choose η = 0 (ideal case), η = 0.005, η = 0.02 and η = 0.05, and it shows that the solution

becomes more diffusive as η is increased. As long as the local structures become more diffuse,
the adaptive mesh for greater values of η will have less cells in the most refined level.

ideal resistive
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Figure 5: Adaptive MR meshes at t = 0.5 obtained with CARMEN code with ε0 = 0.1 for the

ideal and resistive cases.

The error obtained for variable p is larger when compared to the other variables of the model.
That happens because the pressure depends on the values of B, e and u to be computed, thus the
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Ideal η = 0.005 η = 0.02 η = 0.05

Figure 6: Variable ρ obtained with CARMEN code at t = 0.5 for the ideal case and

η = 0.005, η = 0.02, η = 0.05 (from left to right) and ε0 = 0.1.

Table 2: Errors for the ideal Kelvin-Helmholtz simulation with MR

(ε0 = 0.1) and FV compared with referece results.

CARMEN
Variables

Errors
code L1(×10−2) L2(×10−4) L∞(×10−1)

FV

ρ 0.29 0.14 0.89
p 18.25 10.53 67.87

ux 6.57 4.32 22.86

uy 3.34 1.74 8.38
Bx 4.04 2.09 10.69
By 1.65 0.76 3.22

MR

ρ 0.30 0.14 1.00
p 18.38 9.10 60.11

ux 6.72 4.14 21.98

uy 3.82 1.83 8.43
Bx 4.08 1.81 8.63
By 1.91 0.80 3.37

approximation errors of these variables accumulate in the pressure. In Figure 7 we observe that

the solution of p is close to the reference solution on ideal (top) and resistive cases (bottom), for
ε0 = 0.01, ε = 0.05 and ε0 = 0.1, at x = 0.5 and y = 0.5.
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Table 3: Errors for the resistive Kelvin-Helmholtz simulation with MR
(ε0 = 0.1) and FV compared with reference results.

CARMEN
Variables

Errors
code L1(×10−3) L2(×10−4) L∞(×10−2)

FV

ρ 0.13 0.06 0.37
p 7.57 3.56 7.39

ux 2.72 1.47 4.05

uy 1.56 0.90 2.33
Bx 2.26 1.27 1.94
By 1.18 0.64 1.07

MR

ρ 0.81 0.38 0.66
p 55.89 26.04 46.27

ux 10.04 5.58 13.57
uy 9.91 5.62 12.37
Bx 7.27 4.06 5.82

By 3.38 1.89 2.62
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Figure 7: Ideal and resistive MHD cuts of variable p (from top to bottom) obtained at t = 0.5
and L = 9, with reference and CARMEN code solutions for ε0 = 0.01, ε = 0.05, ε0 = 0.1, on

x = 0.5 and y = 0.5.
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5 FINAL REMARKS

We have presented a wavelet based multiresolution approach to compute the Kelvin-Helmholtz
instabilities for the ideal and resistive MHD system with parabolic-hyperbolic divergence clean-

ing approach and compared its results to a reference solution obtained with FLASH code. New
implementations of the resistive MHD model are done in CARMEN code for the MR and FV
approaches. It is shown that the topology of the solution of the problem achieved with the adap-

tive MR is very close to the reference solution and with the respective cuts in the domain and the
error values we ensure that it leads to the expected solution quantitatively. The adaptive method
has proven to be efficient to keep the accuracy of the solution even decreasing the number of

cells in the simulation. In our case we needed an average of 30% of cells for the simulations,
which implied in a reduction of 67% of the CPU time (compared to the FV CARMEN code).
We conclude that the presented MR methodology for the ideal and resistive MHD models is rel-

evant in this instability context and it would be interesting to extend it to more complex space
physics problems in future works.
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RESUMO. Este trabalho refere-se à simulação numérica da instabilidade de Kelvin-Helm-

holtz usando um modelo magneto-hidrodinâmico ideal e resistivo bidimensional no contexto

de uma abordagem de multirresolução adaptativa. As instabilidades de Kelvin-Helmholtz são

causada por uma velocidade de cisalhamento, e normalmente é esperada em uma camada

entre dois fluidos com diferentes velocidades. Devido à sua complexidade, esse tipo de pro-

blema é um teste bem conhecido para esquemas numéricos, sendo importante para a verifica-

ção do código desenvolvido. O objetivo principal deste trabalho é verificar a implementação

numérica do modelo utilizando o conhecido código FLASH, aplicado ao contexto das insta-

bilidades de Kelvin-Helmholtz.

Palavras-chave: magneto-hidrodinâmica, instabilidade de Kelvin-Helmholtz, análise multir-

resolução adaptativa, simulação numérica, computação cientı́fica.
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